NOTATION, SYMBOLS, AND ACRONYMS

Notation	Meaning	
t	Continuous-time variable	
f(t)	Continuous-time signal	
k	Discrete-time variable	
$\{f[k]\}$	Discrete-time sequence	
Δ	Sampling period	
$f(k\Delta)$	Sampled version of $f(t)$	
δ	Delta operator	
q	forward shift operator	
$\delta_K(k)$	Kronecker delta	
$\delta(t)$	Dirac delta	
$\mathcal{E}\{\}$	Expected value of	
Γ_c	Controllability matrix in state space description	
Γ_o	Observability matrix in state space description	
$\Lambda\{\}$	Set of eigenvalues of matrix	
$\mu(t-t_o)$	unit step (continuous time) at time $t = to$	
$\mu[k-k_o]$	unit step (discrete time) at time $k = k_o$	
$f^s(t)$	Dirac impulse-sampled version of $f(t)$	
$\mathcal{F}\left[ight]$	Fourier transform of	
$\mathcal{L}\left[ight]$	Laplace transform of	
$\mathcal{D}\left[ight]$	Delta-transform of	
$\mathcal{Z}\left[ight]$	Z-transform of	
\mathcal{F}^{-1} []	inverse Fourier transform of	
$\mathcal{L}^{-1}\left[\right]$	inverse Laplace transform of	
$\mathcal{D}^{-1}[]$	inverse Delta-transform of	
continued on next page		

888

000

continued from previous page		
Notation	Meaning	
$Z^{-1}[]$	inverse Z-transform of	
s []	Laplace-transform complex variable	
ω	angular frequency	
	Delta-transform complex variable	
γ	Z-transform complex variable	
z $F(\dot{a}, \dot{a})$	Fourier transform of $f(t)$	
$F(j\omega)$		
F(s)	Laplace transform of $f(t)$	
$F_{\delta}(\gamma)$	Delta-transform of $\{f[k]\}$	
$F_q(z)$	Z-transform of $\{f[k]\}$	
$f_1(t) * f_2(t)$	Time convolution of $f_1(t)$ and $f_2(t)$	
$F_1(s) * F_2(s)$	Complex convolution of $F_1(s)$ and $F_2(s)$	
$\Re\{\ldots\}$	real part of	
$\Im\{\dots\}$	imaginary part of	
$\mathbb{C}^{m \times n}$	set of all $m \times n$ matrices with complex entries	
\mathcal{H}_2	Hilbert space of those functions square-integrable along the	
	imaginary axis and analytic in the right-half plane	
\mathcal{L}_1	Hilbert space of those functions absolutely integrable along	
	the imaginary axis	
\mathcal{L}_2	Hilbert space of those functions square-integrable along the	
	imaginary axis.	
\mathcal{H}_{∞}	Hilbert space of those functions bounded along the imagi-	
	nary axis and analytic in the right-half plane	
\mathcal{RH}_∞	Hilbert space of those rational functions bounded along	
	the imaginary axis and analytic in the right-half plane	
\mathcal{L}_∞	Hilbert space of those functions bounded along the imagi-	
	nary axis.	
N	set of all natural numbers	
\mathbb{R}^+	set of real numbers larger than zero	
\mathbb{R}^{-}	set of real numbers smaller than zero	
$\mathbb{R}^{m \times n}$	set of all $m \times n$ matrices with real entries	
S	set of all real rational functions with (finite) poles strictly	
	inside the LHP	
\mathbb{Z}	set of all integer numbers	
$[\alpha_{ik}]$	Matrix where the element in the i^{th} row and k^{th} column	
	is denoted by α_{ik}	
$[\mathbf{A}]_{ik}$	element in the i^{th} row and k^{th} of matrix A	
$[\mathbf{A}]_{i*}$	i^{th} row of matrix A	
$[\mathbf{A}]_{*k}$	k^{th} columm of matrix A	
-	continued on next page	

continued from previous page		
Notation	Meaning	
()*	complex conjugate of	
$G_{h0}(s)$	transfer function of a zero-order hold	
$G_{h1}(s)$	transfer function of a first-order hold	
$H\langle \rangle$	operator notation, i.e. H operates on	
$H_1 \otimes H_2 \langle \rangle$	composite operators, i.e., $H_1\langle H_2 \langle \rangle \rangle$	
I_k	identity matrix in $\mathbb{R}^{k \times k}$	
d.c.	<i>direct current</i> , i.e., zero-frequency signal	
d.o.f.	degrees of freedom	
CTARE	Continuous-Time Algebraic Riccati Equation	
DTARE	Discrete-Time Algebraic Riccati Equation	
CTDRE	Continuous-Time Dynamic Riccati Equation	
DTDRE	Discrete-Time Dynamic Riccati Equation	
IMC	Internal Model Control	
IMP	Internal Model Principle	
LHP	left half-plane	
OLHP	open left half-plane	
RHP	right half- plane	
ORHP	open right-half plane	
NMP	nonminimum phase	
MFD	Matrix fraction description	
LMFD	Left matrix fraction description	
RMFD	Right matrix fraction description	
LTI	Linear time invariant	
LQR	Linear quadratic regulator	
w.r.t	with respect to	

 Table A.1. Notation, symbols and acronyms