
Appendix B

SMITH–MCMILLAN FORMS

B.1 Introduction

Smith–McMillan forms correspond to the underlying structures of natural MIMO
transfer-function matrices. The key ideas are summarized below.

B.2 Polynomial Matrices

Multivariable transfer functions depend on polynomial matrices. There are a num-
ber of related terms that are used. Some of these are introduced here:

Definition B.1. A matrix Π(s) = [pik(s)] ∈ Rn1×n2 is a polynomial matrix if
pik(s) is a polynomial in s, for i = 1, 2, . . . , n1 and k = 1, 2, . . . , n2.

Definition B.2. A polynomial matrix Π(s) is said to be a unimodular matrix
if its determinant is a constant. Clearly, the inverse of a unimodular matrix is also
a unimodular matrix.

Definition B.3. An elementary operation on a polynomial matrix is one of the
following three operations:

(eo1) interchange of two rows or two columns;

(eo2) multiplication of one row or one column by a constant;

(eo3) addition of one row (column) to another row (column) times a polynomial.

Definition B.4. A left (right) elementary matrix is a matrix such that, when
it multiplies from the left (right) a polynomial matrix, then it performs a row (col-
umn) elementary operation on the polynomial matrix. All elementary matrices are
unimodular.

Definition B.5. Two polynomial matrices Π1(s) and Π2(s) are equivalent ma-
trices, if there exist sets of left and right elementary matrices, {L1(s),L2(s), . . . ,Lk1}
and {R1(s),R2(s), . . . ,Rk2}, respectively, such that

Π1(s) = Lk1(s) · · ·L2(s)L1Π2(s)R1(s)R2(s) · · ·Rk2 (B.2.1)
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Definition B.6. The rank of a polynomial matrix is the rank of the matrix
almost everywhere in s. The definition implies that the rank of a polynomial matrix
is independent of the argument.

Definition B.7. Two polynomial matrices V(s) and W(s) having the same number
of columns (rows) are right (left) coprime if all common right (left) factors are
unimodular matrices.

Definition B.8. The degree ∂ck (∂rk) of the kth column (row) [V(s)]∗k ( [V(s)]k∗)
of a polynomial matrix V(s) is the degree of highest power of s in that column (row).

Definition B.9. A polynomial matrix V(s) ∈ Cm×m is column proper if

lim
s→∞

det(V(s) diag
(

s−∂c1 , s−∂c2 , . . . , s−∂cm

)

) (B.2.2)

has a finite, nonzero value.

Definition B.10. A polynomial matrix V(s) ∈ Cm×m is row proper if

lim
s→∞

det(diag
(

s−∂r1 , s−∂r2 , . . . , s−∂rm

)

V(s)) (B.2.3)

has a finite, nonzero value.

B.3 Smith Form for Polynomial Matrices

Using the above notation, we can manipulate polynomial matrices in ways that
mirror the ways we manipulate matrices of reals. For example, the following result
describes a diagonal form for polynomial matrices.

Theorem B.1 (Smith form). Let Π(s) be a m1 ×m2 polynomial matrix of rank
r; then Π(s) is equivalent to either a matrix Πf (s) (for m1 < m2) or to a matrix
Πc(s) (for m2 < m1), with

Πf (s) =
[

E(s) Θf

]

; Πc(s) =

[

E(s)
Θc

]

(B.3.1)

E(s) = diag(ε1(s), . . . , εr(s), 0, . . . , 0) (B.3.2)

where Θf and Θc are matrices with all their elements equal to zero.
Furthermore εi(s) are monic polynomials for i = 1, 2, . . . , r, such that εi(s) is a

factor in εi+1(s), i.e. εi(s) divides εi+1(s).
If m1 = m2, then Π(s) is equivalent to the square matrix E(s).

Proof (by construction)

(i) By performing row and column interchange operations on Π(s), bring to posi-
tion (1,1) the least degree polynomial entry in Π(s). Say this minimum degree
is ν1
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(ii) Using elementary operation (e03) (see definition B.3), reduce the term in the
position (2,1) to degree ν2 < ν1. If the term in position (2,1) becomes zero,
then go to the next step, otherwise, interchange rows 1 and 2 and repeat the
procedure until the term in position (2,1) becomes zero.

(iii) Repeat step (ii) with the other elements in the first column.

(iv) Apply the same procedure to all the elements but the first one in the first row.

(v) Go back to step (ii) if nonzero entries due to step (iv) appear in the first
column. Notice that the degree of the entry (1,1) will fall in each cycle, until
we finally end up with a matrix which can be partitioned as

Π(s) =



















π
(j)
11 (s) 0 0 . . . 0 0
0
0
... Πj(s)
0
0



















(B.3.3)

where π
(j)
11 (s) is a monic polynomial.

(vi) If there is an element of Πj(s) which is of lesser degree than π
(j)
11 (s), then

add the column where this element is to the first column and repeat steps (ii)

to (v). Do this until the form (B.3.3) is achieved with π
(j)
11 (s) of less or, at

most, equal degree to that of every element in Πj(s). This will yield further
reduction in the degree of the entry in position (1,1).

(vii) Make ε1(s) = π
(j)
11 (s).

(viii) Repeat the procedure from steps (i) through (viii) to matrix Πj(s).

Actually the polynomials εi(s) in the above result can be obtained in a direct
fashion, as follows:

(i) Compute all minor determinants of Π(s).

(ii) Define χi(s) as the (monic) greatest common divisor (g.c.d.) of all i× i minor
determinants of Π(s). Make χ0(s) = 1.

(iii) Compute the polynomials εi(s) as

εi(s) =
χi(s)

χi−1(s)
(B.3.4)
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B.4 Smith–McMillan Form for Rational Matrices

A straightforward application of Theorem B.1 leads to the following result, which
gives a diagonal form for a rational transfer-function matrix:

Theorem B.2 (Smith–McMillan form). Let G(s) = [Gik(s)] be an m×m ma-
trix transfer function, where Gik(s) are rational scalar transfer functions:

G(s) =
Π(s)

DG(s)
(B.4.1)

where Π(s) is an m×m polynomial matrix of rank r and DG(s) is the least common
multiple of the denominators of all elements Gik(s).

Then, G(s) is equivalent to a matrix M(s), with

M(s) = diag

(

ε1(s)

δ1(s)
, . . . ,

εr(s)

δr(s)
, 0, . . . , 0

)

(B.4.2)

where {εi(s), δi(s)} is a pair of monic and coprime polynomials for i = 1, 2, . . . , r.
Furthermore, εi(s) is a factor of εi+1(s) and δi(s) is a factor of δi−1(s).

Proof

We write the transfer-function matrix as in (B.4.1). We then perform the algorithm
outlined in Theorem B.1 to convert Π(s) to Smith normal form. Finally, canceling
terms for the denominator DG(s) leads to the form given in (B.4.2).
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We use the symbol GSM (s) to denote M(s), which is the Smith–McMillan form
of the transfer-function matrix G(s) .

We illustrate the formula of the Smith–McMillan form by a simple example.

Example B.1. Consider the following transfer-function matrix

G(s) =













4

(s + 1)(s + 2)

−1

s + 1

2

s + 1

−1

2(s + 1)(s + 2)













(B.4.3)

We can then express G(s) in the form (B.4.1):

G(s) =
Π(s)

DG(s)
; Π(s) =

[

4 −(s + 2)

2(s + 2) −
1

2

]

; DG(s) = (s + 1)(s + 2)

(B.4.4)
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The polynomial matrix Π(s) can be reduced to the Smith form defined in Theorem
B.1. To do that, we first compute its greatest common divisors:

χ0 = 1 (B.4.5)

χ1 = gcd

{

4;−(s + 2); 2(s + 2);−
1

2

}

= 1 (B.4.6)

χ2 = gcd{2s2 + 8s + 6} = s2 + 4s + 3 = (s + 1)(s + 3) (B.4.7)

This leads to

ε1 =
χ1

χ0
= 1; ε2 =

χ2

χ1
= (s + 1)(s + 3) (B.4.8)

From here, the Smith–McMillan form can be computed to yield

GSM(s) =







1

(s + 1)(s + 2)
0

0
s + 3

s + 2






(B.4.9)

B.5 Poles and Zeros

The Smith–McMillan form can be utilized to give an unequivocal definition of poles
and zeros in the multivariable case. In particular, we have:

Definition B.11. Consider a transfer-function matrix , G(s).

(i) pz(s) and pp(s) are said to be the zero polynomial and the pole polynomial
of G(s), respectively, where

pz(s)
4
= ε1(s)ε2(s) · · · εr(s); pp(s)

4
= δ1(s)δ2(s) · · · δr(s) (B.5.1)

and where ε1(s), ε2(s), . . . , εr(s) and δ1(s), δ2(s), . . . , δr(s) are the polyno-
mials in the Smith–McMillan form, GSM (s) of G(s).

Note that pz(s) and pp(s) are monic polynomials.

(ii) The zeros of the matrix G(s) are defined to be the roots of pz(s), and the poles
of G(s) are defined to be the roots of pp(s).

(iii) The McMillan degree of G(s) is defined as the degree of pp(s).

In the case of square plants (same number of inputs as outputs), it follows that
det[G(s)] is a simple function of pz(s) and pp(s). Specifically, we have
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det[G(s)] = K∞
pz(s)

pp(s)
(B.5.2)

Note, however, that pz(s) and pp(s) are not necessarily coprime. Hence, the
scalar rational function det[G(s)] is not sufficient to determine all zeros and poles
of G(s). However, the relative degree of det[G(s)] is equal to the difference between
the number of poles and the number of zeros of the MIMO transfer-function matrix.

B.6 Matrix Fraction Descriptions (MFD)

A model structure that is related to the Smith–McMillan form is that of a matrix
fraction description (MFD). There are two types, namely a right matrix fraction
description (RMFD) and a left matrix fraction description (LMFD).

We recall that a matrix G(s) and its Smith-McMillan form GSM(s) are equiv-
alent matrices. Thus, there exist two unimodular matrices, L(s) and R(s), such
that

GSM(s) = L(s)G(s)R(s) (B.6.1)

This implies that if G(s) is an m × m proper transfer-function matrix, then
there exist a m×m matrix L̃(s) and an m×m matrix R̃(s), such as

G(s) = L̃(s)GSM(s)R̃(s) (B.6.2)

where L̃(s) and R̃(s) are, for example, given by

L̃(s) = [L(s)]−1; R̃(s) = [R(s)]−1 (B.6.3)

We next define the following two matrices:

N(s)
4
= diag(ε1(s), . . . , εr(s), 0, . . . , 0) (B.6.4)

D(s)
4
= diag(δ1(s), . . . , δr(s), 1, . . . , 1) (B.6.5)

where N(s) and D(s) are m×m matrices. Hence, GSM(s) can be written as

GSM(s) = N(s)[D(s)]−1 (B.6.6)

Combining (B.6.2) and (B.6.6), we can write
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G(s) = L̃(s)N(s)[D(s)]−1R̃(s) = [L̃(s)N(s)][[R̃(s)]−1D(s)]−1 = GN(s)[GD(s)]−1

(B.6.7)

where

GN(s)
4
= L̃(s)N(s); GD(s)

4
= [R̃(s)]−1D(s) (B.6.8)

Equations (B.6.7) and (B.6.8) define what is known as a right matrix fraction
description (RMFD).

It can be shown that GD(s) is always column-equivalent to a column proper ma-
trix P(s). (See definition B.9.) This implies that the degree of the pole polynomial
pp(s) is equal to the sum of the degrees of the columns of P(s).

We also observe that the RMFD is not unique, because, for any nonsingular
m×m matrix Ω(s), we can write G(s) as

G(s) = GN(s)Ω(s)[GD(s)Ω(s)]−1 (B.6.9)

where Ω(s) is said to be a right common factor. When the only right common
factors of GN(s) and GD(s) are unimodular matrices, then, from definition B.7,
we have that GN(s) and GD(s) are right coprime. In this case, we say that the
RMFD (GN(s),GD(s)) is irreducible.

It is easy to see that when a RMFD is irreducible, then

• s = z is a zero of G(s) if and only if GN(s) loses rank at s = z; and

• s = p is a pole of G(s) if and only if GD(s) is singular at s = p. This means
that the pole polynomial of G(s) is pp(s) = det(GD(s)).

Remark B.1. A left matrix fraction description (LMFD) can be built similarly,
with a different grouping of the matrices in (B.6.7). Namely,

G(s) = L̃(s)[D(s)]−1N(s)R̃(s) = [D(s)[L̃(s)]−1]−1[N(s)R̃(s)] = [GD(s)]−1GN(s)
(B.6.10)

where

GN(s)
4
= N(s)R̃(s); GD(s)

4
= D(s)[L̃(s)]−1 (B.6.11)
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The left and right matrix descriptions have been initially derived starting from
the Smith–McMillan form. Hence, the factors are polynomial matrices. However,
it is immediate to see that they provide a more general description. In particular,
GN(s), GD(s), GN(s) and GN(s) are generally matrices with rational entries. One
possible way to obtain this type of representation is to divide the two polynomial
matrices forming the original MFD by the same (stable) polynomial.

An example summarizing the above concepts is considered next.

Example B.2. Consider a 2× 2 MIMO system having the transfer function

G(s) =













4

(s + 1)(s + 2)

−0.5

s + 1

1

s + 2

2

(s + 1)(s + 2)













(B.6.12)

B.2.1 Find the Smith–McMillan form by performing elementary row and column
operations.

B.2.2 Find the poles and zeros.

B.2.3 Build a RMFD for the model.

Solution

B.2.1 We first compute its Smith–McMillan form by performing elementary row
and column operations. Referring to equation (B.6.1), we have that

GSM(s) = L(s)G(s)R(s) =









1

(s + 1)(s + 2)
0

0
s2 + 3s + 18

(s + 1)(s + 2)









(B.6.13)

with

L(s) =





1

4
0

−2(s + 1) 8



 ; R(s) =





1
s + 2

8
0 1



 (B.6.14)

B.2.2 We see that the observable and controllable part of the system has zero and
pole polynomials given by

pz(s) = s2 + 3s + 18; pp(s) = (s + 1)2(s + 2)2 (B.6.15)
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which, in turn, implies that there are two transmission zeros, located at −1.5±
j3.97, and four poles, located at −1,−1,−2 and −2.

B.2.3 We can now build a RMFD by using (B.6.2). We first notice that

L̃(s) = [L(s)]−1 =





4 0

s + 1
1

8



 ; R̃(s) = [R(s)]−1 =





1 −
s + 2

8
0 0





(B.6.16)

Then, using (B.6.6), with

N(s) =

[

1 0

0 s2 + 3s + 18

]

; D(s) =

[

(s + 1)(s + 2) 0

0 (s + 1)(s + 2)

]

(B.6.17)

the RMFD is obtained from (B.6.7), (B.6.16), and (B.6.17), leading to

GN(s) =





4 0

s + 1
1

8





[

1 0
0 s2 + 3s + 18

]

=





4 0

s + 1
s2 + 3s + 18

8





(B.6.18)

and

GD(s) =





1
s + 2

8
0 1





[

(s + 1)(s + 2) 0

0 (s + 1)(s + 2)

]

(B.6.19)

=







(s + 1)(s + 2)
(s + 1)(s + 2)2

8

0 (s + 1)(s + 2)






(B.6.20)

These can then be turned into proper transfer-function matrices by introducing
common stable denominators.
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