MATLAB SUPPORT

The accompanying disc contains a set of MATLAB-SIMULINK files. These files provide support for many problems posed in this book, and, at the same time, facilitate the study and application of selected topics.

939

File name	Chapter	Brief description
amenl.mdl	Chap. 19	SIMULINK schematic to evaluate the perfor-
		mance of a linear design on a particular nonlinear
		plant.
apinv.mdl	Chap. 2	SIMULINK schematic to evaluate approximate in-
		verses for a nonlinear plant.
awu.mat	Chap. 26	MATLAB data file – it contains the data re-
		quired to use SIMULINK schematics in file
		mmawu.mdl . This file must be previously loaded
	-	to run the simulation.
awup.m	Chap. 11	MATLAB program to decompose a biproper
		controller in a form suitable to implement an
		anti-windup strategy – requires the function
	~	p_elcero.m.
c2del.m	Chap. 3	MATLAB function to transform a transfer func-
		tion for a continuous-time system with zero-order
• 4 11		hold into a discrete-transfer function in delta form.
cint.mdl	Chap. 22	SIMULINK schematic to evaluate the perfor-
		mance of a MIMO control loop in which the con-
	al an a	troller is based on state estimate feedback.
css.m	Chap. 7	MAILAB function to compute a one-d.o.f. con-
		troller for an n^{n} -order SISO, strictly proper plant
		(continuous of discrete) described in state space
		poles and the desired control poles. This program
		requires the function p electron m
data nowss m	Chap 11	MATLAB program to generate the data required
data_newss.m	Chap: 11	for newss mdl – this program requires lam-
		hor m
dcc4.mdl	Chap. 10	SIMULINK schematic to evaluate the perfor-
accinitai	enapi 10	mance of a cascade architecture in the control of a
		plant with time delay and generalised disturbance.
dcpa.mdl	Chap. 13	SIMULINK schematic to evaluate the perfor-
-	1	mance of the digital control for a linear,
		continuous-time plant.
dead1.mdl	Chap. 19	SIMULINK schematic to study a compensation
	-	strategy for deadzones.
del2z.m	Chap. 13	MATLAB function to transform a discrete-time
		transfer function in delta form to its Z-transform
		equivalent.
		continued on next page

continued from provious page		
File name	Directory	Brief description
dff2 mdl	Chap 10	SIMULINK schematic to evaluate the perfor
uno.mui	Chup. 10	manage of disturbance foodformund in the control
		mance of disturbance feedforward in the control
		of a plant with time delay and generalised distur-
1. (0. 1)	<u>(1</u>)	Dance.
distff.mdl	Chap. 10	SIMULINK schematic to compare a one d.o.f. con-
		trol against a two-d.o.f. control in the control of a
		plant with time delay.
distffun.mdl	Chap. 10	SIMULINK schematic to evaluate the perfor-
		mance of disturbance feedforward in the control
		of an unstable plant and generalised disturbance.
lambor.m	Chap. 11	MATLAB program to synthesise an observer – this
		routine can be easily modified to deal with differ-
		ent plants.
lcodi.mdl	Chap. 13	SIMULINK schematic to compare discrete-time
		and continuous-time PID controllers for the con-
		trol of an unstable plant.
linnl.mat	Chap. 19	MATLAB data file, with the linear design data
		used in solved problem.
mimo1.mdl	Chap. 21	SIMULINK schematic with a motivating example
		for the control of MIMO systems.
mimo2.mdl	Chap. 22	SIMULINK schematic to simulate a MIMO design
		based on an observer plus state estimate feedback.
mimo2.mat	Chap. 22	MATLAB data file for mimo2.mdl .
mimo3.mdl	Chap. 25	SIMULINK schematic for the triangular control of
		a MIMO stable and nonminimum phase plant, by
		using an IMC architecture.
mimo4.mdl	Chap. 26	SIMULINK schematic for the decoupled control of
		a MIMO stable and minimum phase plant plant,
		using an IMC architecture.
minv.m	Chap. 25	MATLAB function to obtain the inverse (in state
		space form) of a biproper MIMO system in state
		space form.
mmawe.mdl	Chap. 26	SIMULINK schematic for the (dynamically decou-
		pled) control of a MIMO system with input satura-
		tion – an anti-windup mechanism is used, and di-
		rectionality is (partially) recovered by scaling the
		control error.
continued on next page		

continued from previous page			
File name	Directory	Brief description	
mmawu.mdl	Chap. 26	SIMULINK schematic for the (dynamically decou-	
		pled) control of a MIMO system with input satura-	
		tion – an anti-windup mechanism is used, and di-	
		rectionality is (partially) recovered by scaling the	
		controller output.	
newss.mdl	Chap. 11	SIMULINK schematic to study a (weighted)	
		switching strategy to deal with state-saturation	
		constraints.	
nmpq.mdl	Chap. 15	SIMULINK schematic to evaluate disturbance	
		compensation and robustness in the IMC control	
		of a NMP plant	
oph2.m	Chap. 16	MATLAB function to perform H2 minimization to	
_		solve the model-matching problem.	
p_elcero.m	Chap. 7	MATLAB function to eliminate leading zeros in a	
		polynomial.	
paq.m	Chap. 7	MATLAB function to solve the pole assignment	
		equation: The problem can be set either for	
		Laplace transfer functions or by using the Delta-	
		transform. This program requires the function	
	<i>C</i> 1 10	p_elcero.m.	
phioop.mdi	Chap. 19	SIMULINK schematic to evaluate the IMC control	
		of a pH neutransation plant by using approximate	
nhloon mot	Chan 10	MATLAP data file associated phloop mdl	
phoop.mat	Chap. 19 Chap. 11	SIMULINK schematic to avaluate an anti windup	
piawupiniu	Chap. 11	stratogy in linear controllors by freezing the inte	
		gral action when its output saturates	
nid1 mdl	Chan 6	SIMILINK schematic to analyze the performance	
plai.indi	Chiap: 0	of a PID control that uses empirical tuning meth-	
		ods	
pidemp.mdl	Chap. 6	SIMULINK schematic to use the Ziegler-Nichols	
praompiniai	enapt e	tuning method based on closed-loop oscillation:	
		The plant is linear, but of high order, with input	
		saturation and noisy measurements.	
pmimo3.m	Chap. 25	MATLAB program to compute the Q controller	
-	-	for solved problem.	
qaff1.mdl	Chap. 15	SIMULINK schematic to analyze the loop perfor-	
		mance of an IMC control loop of a NMP plant.	
		continued on next page	

continued from previous page		
File name	Directory	Brief description
qaff2.mdl	Chap. 15	SIMULINK schematic to analyze the loop perfor-
-	-	mance of the Smith controller in Q form.
qawup.mdl	Chap. 11	SIMULINK schematic to implement an anti-
	-	windup mechanism in the IMC architecture – the
		decomposition of $Q(s)$ was done by using MAT-
		LAB function awup.m .
sat_uns.mdl	Chap. 15	SIMULINK schematic to study saturation in un-
		stable plants with disturbances of variable dura-
		tion.
slew1.mdl	Chap. 11	SIMULINK schematic to evaluate the perfor-
		mance of a PI controller with anti-windup mecha-
		nism to control a plant with slew-rate limitation.
smax.m	Chap. 9	MATLAB function to compute a lower bound for
		the peak of the nominal sensitivity S_o – the plant
		model has a number of unstable poles, and the
		effect of one particular zero in the open RHP is
	~	examined.
softloop1.mdl	Chap. 19	SIMULINK schematic to compare the perfor-
		mances of linear and nonlinear controllers for a
0 11 11	<i>C</i> 1 10	civiliar nonlinear plant.
sontpil.mai	Chap. 19	MATLAR data flat it contains the controller
sugua.mat	Chap. 24	MAILAB data life: - It contains the controller
		the sugar mill
sugmill mdl	Chan 24	SIMULINK schematic for the multivariable con-
Sugminu	enap: 24	trol of a sugar mill station.
sugpid.mdl	Chap. 24	SIMULINK schematic for the PID control of a
01	1 /	sugar mill station – the design for the multivari-
		able plant is based on a SISO approach.
sugtr.mat	Chap. 24	MATLAB data file – it contains the controller re-
		quired to do triangularly decoupled control of the
		sugar mill.
tank1.mdl	Chap. 2	SIMULINK schematic to illustrate the idea of in-
		version of a nonlinear plant.
tmax.m	Chap. 9	MATLAB function to compute a lower bound for
		the peak of the nominal complementary sensitivity
		T_o . The plant model has a number of NMP zeros,
		and the effect of one particular pole in the open
		RHP is examined.
		continued on next page

continued from previous page			
File name	Directory	Brief description	
z2del.m	Chap. 13	MATLAB routine to transform a discrete-time	
		transfer function in Z-transform form to its Delta-	
		transform equivalent.	

 Table E.1. Description of MATLAB support files