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Chapter 3

ModelingModeling
Topics to be covered include: 
! How to select the appropriate model complexity
! How to build models for a given plant
! How to describe model errors.
! How to linearize nonlinear models

It also provides a brief introduction to certain commonly
used models, including
! State space models
! High order differential and high order difference equation models
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The Raison d'être for Models

The basic idea of feedback is tremendously
compelling. Recall the mould level control problem
from Chapter 2. Actually, there are only three ways
that a controller could manipulate the valve: open,
close or leave it as it is. Nevertheless, we have seen
already that the precise way this is done involves
subtle trade-offs between conflicting objectives, such
as speed of response and sensitivity to measurement
noise.
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The power of a mathematical model lies in the fact 
that it can be simulated in hypothetical situations, be 
subject to states that would be dangerous in reality, 
and it can be used as a basis for synthesizing controllers.
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Model Complexity

In building a model, it is important to bear in mind
that all real processes are complex and hence any
attempt to build an exact description of the plant is
usually an impossible goal. Fortunately, feedback is
usually very forgiving and hence, in the context of
control system design, one can usually get away with
rather simple models, provided they capture the
essential features of the problem.
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We introduce several terms:
! Nominal model. This is an   approximate description of

the plant used for control system design.

! Calibration model.  This is a more comprehensive
description of the plant. It includes other features not used
for control system design but which have a direct bearing
on the achieved performance.

! Model error. This is the difference between the nominal
model and the calibration model.  Details of this error may
be unknown but various bounds may be available for it.
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Building Models
A first possible approach to building a plant model is to postulate a
specific model structure and to use what is known as a black box
approach to modeling.  In this approach one varies, either by trial and
error or by an algorithm, the model parameters until the dynamic
behavior of model and plant match sufficiently well.
An alternative approach for dealing with the modeling problem is to
use physical laws (such as conservation of mass, energy and
momentum) to construct the model.  In this approach one uses the fact
that, in any real system, there are basic phenomenological laws which
determine the relationships between all the signals in the system.
In practice, it is common to combine both black box and
phenomenological ideas to building a model.
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Control relevant models are often quite simple
compared to the true process and usually combine
physical reasoning with experimental data.
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State Space Models

For continuous time systems

For discrete time systems

dx

dt
= f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

x[k + 1] = fd(x[k], u[k], k)
y[k] = gd(x[k], u[k], k)
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Linear State Space Models

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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Example 3.3

Consider the simple electrical network shown in
Figure 3.1.  Assume we want to model the voltage
v(t)

On applying fundamental network laws we obtain
the following equations:

Figure 3.1:  Electrical
network.  State space model.
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These equations can be rearranged as follows:

We have a linear state space model with

di(t)
dt

=
1
L

v(t)

dv(t)
dt

= − 1
C

i(t) −
(

1
R1C

+
1

R2C

)
v(t) +

1
R1C

vf (t)

A =

[
0 1

L

− 1
C −

(
1

R1C + 1
R2C

)]
; B =

[
0
1

R1C

]
; C =

[
0 1

]
; D = 0
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Example 3.4

Consider a separately excited d.c. motor. Let va(t)
denote the armature voltage, θ(t) the output angle. A
simplied schematic diagram of this system is shown
in Figure 3.2.

Figure 3.2:  Simplified model of a d.c. motor
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A laboratory servo kit
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A demonstration robot containing
several servo motors
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Let
J  - be the inertia of the shaft
τe(t)  - the electrical torque
ia(t)  - the armature current
k1; k2  - constants
R  - the armature resistance

Application of well known principles of physics tells
us that the various variables are related by:
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Jθ̈(t) = τe(t) = k1ia(t)

vω(t) = k2θ̇(t)

ia(t) =
va(t) − k2θ̇(t)

R

d

dt

(
x1(t)
x2(t)

)
=

[
0 1
0 −k1k2

R

] [
x1(t)
x2(t)

]
+

[
0
k1
R

]
va(t)
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Solution of Continuous Time
State Space Models

A key quantity in determining solutions to state
equations is the matrix exponential defined as

The explicit solution to the linear state equation is
then given by

eAt = I +
∞∑

i=1

1
i!
Aiti

x(t) = eA(t−to)xo +
∫ t

to

eA(t−τ)Bu(τ )dτ
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Modeling Errors

The so-called additive modeling error (AME) is
defined by a transformation g² such that

A difficulty with the AME is that it is not scaled
relative to the size of the nominal model.  This is the
advantage of the so-called multiplicative modeling
error (MME), g∆ , defined by

y = yo + gε〈u〉

y = go

〈
u + g∆〈u〉〉
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Example 3.5

The output of a plant is assumed to be exactly described
by

where f〈o〉 is a linear transformation and sat denotes the 
saturation operator, i.e.

If the nominal model is chosen as g0〈o〉 = f 〈o〉, i.e. the 
saturation is ignored, determine the additive and the 
multiplicative modeling errors. 

y = f
〈
satα〈u〉

〉

satα〈x〉 =

{
α |x(t)| > |α|
x |x(t)| ≤ |α|
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Figure 3.3:  AME and MME due to saturation
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Linearization

Although almost every real system includes
nonlinear features, many systems can be reasonably
described, at least within certain operating ranges, by
linear models.
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Thus consider

Say that {xQ(t), uQ(t), yQ(t); t ∈  !} is a given set of
trajectories that satisfy the above equations, i.e.

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

ẋQ(t) = f(xQ(t), uQ(t)); xQ(to) given
yQ(t) = g(xQ(t), uQ(t))

ẋ(t) ≈ f(xQ, uQ) +
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

(x(t) − xQ) +
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

(u(t) − uQ)

y(t) ≈ g(xQ, uQ) +
∂g

∂x

∣∣∣∣ x=xQ
u=uQ

(x(t) − xQ) +
∂g

∂u

∣∣∣∣ x=xQ
u=uQ

(u(t) − uQ)
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ẋ(t) = Ax(t) + Bu(t) + E

y(t) = Cx(t) + Du(t) + F

A =
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

; B =
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

C =
∂g

∂x

∣∣∣∣ x=xQ
u=uQ

; D =
∂g

∂u

∣∣∣∣ x=xQ
u=uQ

E = f(xQ, uQ) − ∂f

∂x

∣∣∣∣ x=xQ
u=uQ

xQ − ∂f

∂u

∣∣∣∣ x=xQ
u=uQ

uQ

F = g(xQ, uQ) − ∂g

∂x

∣∣∣∣ x=xQ
u=uQ

xQ − ∂g

∂u

∣∣∣∣ x=xQ
u=uQ

uQ
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Example 3.6

Consider a continuous time system with true model
given by

Assume that the input u(t) fluctuates around u = 2.
Find an operating point with  uQ = 2  and a linearized
model around it.

dx(t)
dt

= f(x(t), u(t)) = −
√

x(t) +
(u(t))2

3

d∆x(t)
dt

= −3
8
∆x(t) +

4
3
∆u(t)
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Figure 3.4:  Nonlinear system output,  ynl(t), and linearized
system output,  yl(t), for a square wave input of increasing
amplitude, u(t).
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Example 3.7 (Inverted pendulum)

Figure 3.5:  Inverted pendulum

In Figure 3.5, we have used the following notation:
y(t) - distance from some reference point
θ(t) - angle of pendulum
M - mass of cart
m - mass of pendulum (assumed concentrated at tip)
 - length of pendulum
f(t) - forces applied to pendulum
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Example of an Inverted Pendulum
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Application of Newtonian physics to this system
leads to the following model:

where  λm = (M/m)

ÿ =
1

λm + sin2 θ(t)

[
f(t)
m

+ θ̇2(t)
 sin θ(t) − g cos θ(t) sin θ(t)
]

θ̈ =
1


λm + sin2 θ(t)

[
−f(t)

m
cos θ(t) + θ̇2(t)
 sin θ(t) cos θ(t) + (1 − λm)g sin θ(t)

]
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This is a linear state space model in which A, B and C are:

A =




0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 (M+m)g

M� 0


 ; B =




0
1
M
0

− 1
M�


 ; C =

[
1 0 0 0

]
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Further ExamplesFurther Examples
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Here we present several other examples which
illustrate basic modelling principles.

All of these models depend upon basic physical
principles, e.g.

◆ conservation of mass
◆ conservation of momentum
◆ conservation of energy.
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Further Example 1:Thermal Mixing

Consider a cylindrical tank into which flows hot and
cold streams of fluid

Tank is assumed well stirred and well insulated.

Cold streamHot stream

Outflow
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Let uh = hot stream flow rate
uc = cold stream flows rate
A = Area of tank
h = level of liquid in tank
T = temperature of outflow
fout = outflow rate
Th = temperature of hot stream
Tc = temperature of cold stream
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We assume we know uh, uc, A, Th, Tc and want to
model T and h.  Also assume that all streams have a
common specific heat  c  and density   ρ.
Also, we assume

hkfout =
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 Mass Balance

outch fuu −+

Rate of
Change

of
Volume

=

hkuudt
dhA ch −+=
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Energy Balance

Rate of
Change

of
Internal Energy

    =  heat in - heat out

Tfc

TucTuccA

out

cchhdt
dTh

ρ

ρρρ

−

+=
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Combining these equations we obtain

hkTTuTudt
dhATdt

dTAh

hkuudt
dhA

cchh

ch

−+=+

−+=
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Final Nonlinear Model

( ) ( ){ }cchhAhdt
dT

A
cu

A
hu

A
k

dt
dh

uTTuTT

h

−+−=

++−=
1

Substituting the first equation above into the second
yields:
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Observations

We see that the model comprises 2 nonlinear state
space equations.  (The nonlinearities appear in the
 √h term and in terms of the form        ).
We next simulate the system to get a feel for its
behaviour.

[ ]h
Tu
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Parameters

For simplicity, we assume

A = 1, k = 1
Th = 50, Tc = 20
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Simulation 1

We begin by using only the hot water flow as input.
We begin with a flow of 10, then step it up to 15 and
then back to 5.

Note that the temperature stays constant at 50ºC.
The height response is shown on the next slide.
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Observations

❖ When we increase the hot flow the level goes up
(in a roughly exponential fashion).

❖ Notice the nonlinear behaviour:
◆ the settling time when the flow is increased is

about 150 minutes compared to 50 minutes
when the flow is decreased.

◆ Increasing the flow by 5 gives an increase in
level of 125 but decreasing the flow by 5 gives
a decrease in level of 75.
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Simulation 2

We next set both flows to 5.  We then step up the hot
flow to 6 followed by decrease to 4.

The results are shown in the next plots.
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Observations

We see that the response is now much more nearly
linear - This is because we are making a small
change about an operating point.

Also, notice that the temperature now goes up and
then down due to the fact that we now also have a
cold flow.



 Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 3

Simulation 3

We next set both flows initially to 5.  We then step
the hot flow up to 6 followed by an increase in the
cold flow to 6.
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Simulation 4

We next step the two flows up simultaneously by the
same amount.

This causes height to increase but temperature to
remain constant.
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Simulation 5

We next step the hot flow up and the cold flow down
by the same amount.

This causes the temperature to increase but the
height to stay the same.
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Final Observation

We see from all of these small change experiments
that the system behaves in a (very nearly) linear
fashion provided we stay near a given operating
point, i.e. superposition applies.

This suggests that we should be able to find a good
approximation to the model by linearizing about any
given equilibrium point.
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Linearization

Take  A = 1,  k = 1

h = h0 + ∆h h0 = 4
T = T0 + ∆T T0 = 35
uh = uh

0 + ∆uh,  uh
0 = 1

uc = uc
0 + ∆uc,  uc

0 = 1
Th = 50
Tc = 20
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Linearized Model
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A question to think about

Say we wanted to control the 2 flows  uh and uc so as
to:

(i)   keep the height of liquid in the tank constant
(ii)  maintain the temperature of liquid in the tank.

Would you use uh to control h and uc to control T, or
vice versa ?
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Hint

Actually this question is very interesting.  It lies at
the heart of architectural issues in control system
design.

It may be useful to think laterally and consider what
is really causing h and T to change !
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Further Example 2 - One
dimensional nonsteady conduction
This kind of problem occurs in many heat transfer
applications.   Consider a rectangular block of
material of cross sectional area  A  where conditions
ensure uniform temperatures in the y, z directions.
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Let  t  denote time,  θ  temperature.  Then  θ  is a
function of  x  and  t.

sla
b

x dx

Area A

z

x

y
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Physical Laws

Two physical laws govern this problem:

❖ Fourier’s Law
rate of heat conduction is proportional to
temperature gradient

❖ First Law of Thermodynamics
increase in internal energy

                = heat in - heat out.
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A Partial Differential Equation
Model

We will first derive a partial differential equation
model for the temperature.

Let dQx denote heat flow into left side of slab in
time  dt

dQx+dx denote heat flow out of right side of
slab in time dt.

ρ density of material

cp specific heat
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Fourier’s Law gives

( )
( ){ }

( ){ }dtdxkA

dtdxkAdQ

dtkAdQ

xx

xxdxx

xx

2
2

∂
∂

∂
∂

∂
∂

∂
∂

+

∂
∂

+−=

+−=

−=

θθ

θ

θ

θ

First Law of Thermodynamics gives

))(( θρ dAdxcdQdQ pdxxx =− +
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Thus

or

where

dxdtkAAdxdc
xp 2
2

∂
∂= θθρ

( ) ( )2
2
xdt ∂

∂∂ = θθ α

.
pc

k
ρα =
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Finite Difference Equation Form

Whilst there does exist some theory for the control of
systems described by partial differential equations, it
is usually much better to have a simplified model.
We can develop such a simplified model by dividing
the slab into a finite number of strips of width ∆.
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Note that θ is a function of x and t.  Thus, we
associate a different temperature with each slab of
width ∆.

N∆ = length of block

inQ& outQ&

1θ 1−nθ 1+nθnθ Nθ
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We then have at time  t  and for the nth position:

2
121

2
2

∆
−+−+

∂
∂ ≈ nnn

x
θθθθ

Hence we can approximate the partial differential 
equation by

[ ]
1,...,2
2

121

−=

=
∆

−+−+

Ni

iii
dt

id θθθθ α
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At the boundaries need to include heat in and heat
out, i.e.

Note also that        and          would typically be a
function of the surface temperature plus some
driving term. We then have a set of N first order
linear ordinary differential equations.

[ ]
[ ] dt

Nd
p

NN
out

dt
d

pin

ApckAQ

ApckAQ

θθθ

θθθ

∆=+−

∆=+

∆
−−

∆
−

1

112

&

&

inQ& outQ&
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When would we use this kind of
model?

The model described above gives detailed descriptions
of the time evolution of internal temperatures in the
block.  Thus it is probably most useful as a calibration
model.  However, for control system design one would
probably use a design model which was much simpler.
Such a model might be formed by either simulating the
system and fitting a simple model or by observing the
response of the real system.  Typically such a model
would take the form of a simple delay plus first order
lag.
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A real application ?

Actually the above model is essentially identical to
that used to model the effect of cooling water sprays
on strip shape in cold rolling mills.

[One of the main differences is that the shape control
problem actually involves cylindrical rolls rather
than a rectangular slab.  The reader may care to
rederive the model using cylindrical coordinates]
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Typical rolling stand configuration
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What is flatness in a Rolling
Mill?

If rolling results in a nonuniform reduction of the
strip thickness across the strip width, then a residual
stress will be created, and buckling of the final
product may occur.  A practical difficulty is that
flatness defects can be pulled out by the applied strip
tensions, so that they are not visible to the mill
operator.  However, the buckling will become
apparent as the coil is unwound or after it is slit or
cut to length in subsequent processing operations.
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Source of Flatness Problems

There are several sources of flatness problems, including
the following:

◆ roll thermal cambers
◆ incoming feed disturbances (profile, hardness, thickness)
◆ transverse temperature gradients
◆ roll stack deflections
◆ incorrect ground roll cambers
◆ roll wear
◆ inappropriate mill setup (reduction, tension, force, roll

bending)
◆ lubrication effects.
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On the other hand, there are strong economic
motives to control strip flatness, including the
following:

◆ improved yield of prime-quality strip
◆ increased throughput, due to faster permissible

acceleration, reduced threading delay, and higher
rolling speed on shape-critical products

◆ more efficient recovery and operation on such
downstream units as annealing and continuous-process
lines

◆ reduced reprocessing of material on tension-leveling
li lli ill
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Control Options

There are several control options to achieve
improved flatness.  These include roll tilt, roll
bending, and cooling sprays.  These typically can be
separated by preprocessing the measured shape.
Here, we will focus on a particular aspect of the
cooling spray option.  Note that flatness defects can
be measured across the strip by using a special
instrument called a Shape Meter.  A typical control
configuration is shown on the next slide.
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Typical flatness-control set-up
for rolling mill
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In this configuration, numerous cooling sprays are
located across the roll, and the flow through each
spray is controlled by a valve.  The cool water
sprayed onto the roll reduces the thermal expansion.
The interesting thing is that each spray affects a large
section of the roll, not just the section directly
beneath it.  This leads to an interactive MIMO
system, rather than a series of decoupled SISO
systems.
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The thermal properties of the roll can be modeled
using basic laws of physics.  This leads to a partial
differential equation, however, this can be
discretized to give a finite dimensional model.  Such
a model can then be used as a calibration model  to
test control system design strategies.

The main components of the heat flow inside a
typical roll are shown on the next slide.
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Internal roll heat flows
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For the purpose of control system design, it suffices
to use a simpler model.  Such a model can be
developed by approximating the observed behavior
of the more complex calibration model.  A key
feature of the observed behavior is that a single
cooling spray (one of the actuators) effects the radial
diameter of the roll and hence the measured strip
shape over a extended spatial area.  This is
diagrammatically shown on the next slide.
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Action of single spray

Effect of a single spray on roll 
diameter
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Based on the above discussion, a simplified model
for this system (ignoring nonlinear heat-transfer
effects, etc.) is shown in the block diagram on the
next slide, where  U  denotes a vector of spray valve
positions and Y denotes the roll-thickness vector.
(The lines indicate vectors rather than single
signals).
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Simplified flatness-control feedback
loop
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The sprays affect the roll in a roughly exponential
fashion as described by the matrix  M:

The parameter  α  represents the level of interactivity
in the system and is determined by the number of
sprays present and how close together they are.

M =




1 α α2 · · ·
α 1

α2 . . .
...

... 1 α
· · · α 1
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Control System Design

Details of the control system design for this problem
are given in Chapter 21 of these notes.
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Summary
❖ In order to systematically design a controller for a

particular system, one needs a formal - though possibly
simple - description of the system. Such a description is
called a model.

❖ A model is a set of mathematical equations that are
intended to capture the effect of certain system variables
on certain other system variables.
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❖ The italicized expressions above should be understood as
follows:

◆ Certain system variables: It is usually neither possible
nor necessary to model the effect of every variable on
every other variable; one therefore limits oneself to
certain subsets. Typical examples include the effect of
input on output, the effect of disturbances on output, the
effect of a reference signal change on the control signal,
or the effect of various unmeasured internal system
variables on each other.
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◆ Capture: A model is never perfect and it is therefore
always associated with a modeling error. The word
capture highlights the existence of errors, but does not
yet concern itself with the precise definition of their
type and effect.

◆ Intended: This word is a reminder that one does not
always succeed in finding a model with the desired
accuracy and hence some iterative refinement may be
needed.

◆ Set of mathematical equations: There are numerous
ways of describing the system behavior, such as linear
or nonlinear differential or difference equations.
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❖ Models are classified according to properties of the equation
they are based on. Examples of classification include:

❖ In many situations nonlinear models can be linearized
around a user defined operating point.

Model
Attribute Contrasting Attribute Asserts whether or not …

Single input
Single output Multiple input multiple output … the model equations have one input and one output only
Linear Nonlinear … the model equations are linear in the system variables
Time varying Time invariant … the model parameters are constant
Continuous Sampled … model equations describe the behavior at every instant of

time, or only in discrete samples of time
Input-output State space … the model equations rely on functions of input and output

variables only, or also include the so called state variables.
Lumped
parameter

Distributed parameter … the model equations are ordinary or partial differential
equations


