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 Continuous Time Signals
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Specific topics to be covered include:
❖ linear high order differential equation models

❖ Laplace transforms, which convert linear differential
equations to algebraic equations, thus greatly simplifying
their study

❖ methods for assessing the stability of linear dynamic
systems

❖ frequency response.
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Linear Continuous Time Models

The linear form of this model is:

Introducing the Heaviside, or differential, operator ρ〈o〉:

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ . . . + a0y(t) = bn−1
dn−1

dtn−1
u(t) + . . . + b0u(t)

ρ〈f(t)〉 = ρf(t) � df(t)
dt

ρn〈f(t)〉 = ρnf(t) = ρ
〈
ρn−1〈f(t)〉〉 =

dfn(t)
dtn

ρny(t) + an−1ρ
n−1y(t) + . . . + a0y(t) = bn−1ρ

n−1u(t) + . . . + b0u(t)

We obtain:
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Laplace Transforms

The study of differential equations of the type
described above is a rich and interesting subject. Of
all the methods available for studying linear
differential equations, one particularly useful tool is
provided by Laplace Transforms.
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Definition of the Transform

Consider a continuous time signal y(t); 0 ≤ t < ∞.
The Laplace transform pair associated with y(t) is
defined as

L [y(t)] = Y (s) =
∫ ∞

0−
e−sty(t)dt

L−1 [y(s)] = y(t) =
1

2πj

∫ σ+j∞

σ−j∞
estY (s)ds
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A key result concerns the transform of the derivative
of a function:

L
[
dy(t)
dt

]
= sY (s) − y(0−)
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Table 4.1:  Laplace transform table

f(t) (t ≥ 0) L [f(t)] Region of Convergence

1
1
s

σ > 0

δD(t) 1 |σ| < ∞
t

1
s2

σ > 0

tn n ∈ Z+ n!
sn+1

σ > 0

eαt α ∈ C
1

s− α
σ > 	{α}

teαt α ∈ C
1

(s− α)2
σ > 	{α}

cos(ωot)
s

s2 + ω2
o

σ > 0

sin(ωot)
ωo

s2 + ω2
o

σ > 0

eαt sin(ωot + β)
(sinβ)s + ω2

o cosβ − α sinβ

(s− α)2 + ω2
o

σ > 	{α}

t sin(ωot)
2ωos

(s2 + ω2
o)2

σ > 0

t cos(ωot)
s2 − ω2

o

(s2 + ω2
o)2

σ > 0

µ(t) − µ(t− τ)
1 − e−sτ

s
|σ| < ∞



Chapter 4  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Table 4.2:  Laplace transform properties. Note that
[ ] [ ] { } .00))()(,,...3,2,1,)()(,)()( 21 <∀==∈== ttftfktysYtfsF ii

f(t) L [f(t)] Names
l∑

i=1

aifi(t)
l∑

i=1

aiFi(s) Linear combination

dy(t)
dt

sY (s) − y(0−) Derivative Law

dky(t)
dtk

skY (s) − ∑k
i=1 s

k−i di−1y(t)
dti−1

∣∣∣∣
t=0−

High order derivative∫ t

0−
y(τ)dτ

1
s
Y (s) Integral Law

y(t− τ)µ(t − τ) e−sτY (s) Delay

ty(t) −dY (s)
ds

tky(t) (−1)k d
kY (s)
dsk∫ t

0−
f1(τ)f2(t− τ)dτ F1(s)F2(s) Convolution

lim
t→∞ y(t) lim

s→0
sY (s) Final Value Theorem

lim
t→0+

y(t) lim
s→∞ sY (s) Initial Value Theorem

f1(t)f2(t)
1

2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s− ζ)dζ Time domain product

eatf1(t) F1(s− a) Frequency Shift
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Pierre Simon Laplace 1749-1827
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Brief History of Laplace

Laplace, at 16, entered CAEN University. He intended
to enter the church, and enrolled in theology.

However, during his 2 years at CAEN he discovered
his mathematical talents.

He left CAEN at 19 and went to Paris with a letter of
introduction to d’Alembert.  Soon Laplace was
appointed Professor of Mathematics at Ecole Militaire.

He begin producing a steady stream of mathematical
papers.
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The 1780’s were the period in which Laplace produced
the depth of results which made him one of the most
important and influential scientists the world has seen.

Apparently he was not modest about his abilities and
probably upset colleagues.

Lexell visited Paris in 1780-81 and reported that Laplace
let it known he considered himself the best
mathematician in Paris.  The effect on his colleagues
would have been only mildly eased by the fact that
Laplace was right !
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In 1784, Laplace was appointed to the Royal Artillery
Corps, and in this role in 1785 he examined  and passed
a 16 year old person (Napoleon Bonaparte).

He also had difficulty during the French reign of terror.
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Major contributions to:
◆ Astronomy
◆ Celestial Mechanics
◆ Probability Theory
◆ General Physics.
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Personal Life:
◆ Laplace married on 15 May 1788 at 39.
◆ His wife was 20 years younger.
◆ They had 2 children.
◆ Laplace died on Monday 5th March 1827 at 77

years of age.
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Transfer Functions

Taking Laplace Transforms converts the differential
equation into the following algebraic equation

where

and

G(s) is called the transfer function.

Y (s) = G(s)U(s)

G(s) =
B(s)
A(s)

A(s) =sn + an−1s
n−1 + . . . + a0

B(s) =bn−1s
n−1 + bn−2s

n−2 + . . . + b0

This can be expressed as

snY (s) + an 1sn 1Y (s) + . . . + a0Y (s)

= bn 1sn 1U (s) + . . . + b0U(s) + f(s, xo)

- -

- -
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Transfer Functions for Continuous
Time State Space Models
Taking Laplace transform in the state space model 
equations yields

and hence

G(s) is the system transfer function.

sX(s) − x(0) = AX(s) + BU(s)
Y (s) = CX(s) + DU(s)

X(s) = (sI− A)−1x(0) + (sI− A)−1BU(s)

Y (s) = [C(sI− A)−1B + D]U(s) + C(sI− A)−1x(0)

Y (s) = G(s)U(s)

G(s) = C(sI− A)−1B + D
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Often practical systems have a time delay between
input and output. This is usually associated with the
transport of material from one point to another.  For
example, if there is a conveyor belt or pipe
connecting different parts of a plant, then this will
invariably introduce a delay.
The transfer function of a pure delay is of the form
(see Table 4.2):

where Td is the delay (in seconds).  Td will typically
vary depending on the transportation speed.

H(s) = e−sTd
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Example 4.4 (Heating system).  As a simple
example of a system having a pure time delay
consider the heating system shown below.
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The transfer function from input (the voltage applied
to the heating element) to the output (the temperature
as seen by the thermocouple) is approximately of the
form:

H(s) =
Ke−sTd

(τs + 1)
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Summary

Transfer functions describe the input-output
properties of linear systems in algebraic form.
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Transfer Functions
- Simulink 4.0 (©Mathworks)

Using Simulink® to Simulate
Transfer Functions

This section contributed by:
Jia Chunyang, S. Rohani and Arthur Jutan
Dept. of Chemical & Biochemical Engineering
The University of Western Ontario
London, Ontario, Canada
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Simple Physical Models
The primitive block diagram components we’ve
defined so far may be used to model any physical
system that can be described completely using linear
differential equations.  To see how we build block
diagrams using these components, consider the simple
cart shown in Figure 1.  Ignoring friction, we can
write the equation of motion for this system as

m
Fx=&&
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Figure 1: Cart

x

F m
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(Note that we use the notation     to represent the
time derivatives;  thus     is equivalent to d2x/dt2.)
This system may be represented by the block
diagram shown in Figure 2.  We can expand this
block diagram to compute the cart position.  In
Figure 3 we have added two integrators.  The first
computes the cart velocity, while the second
computes displacement.

x&
x&&
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Figure 2:  Block diagram of cart equation of motion

F x&&m
1
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Figure 3:  Block diagram of cart position computation

F x&&
m
1 x& x

s
1

s
1
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Transfer Function Block

Transfer function notation is frequently used in
control system design and system modeling.  The
transfer function can be defined as the ratio of the
Laplace transform of the input to a system (or
subsystem) to the Laplace transform of the output,
assuming zero initial conditions.  Thus, the transfer
function provides a convenient input-output
description of the system dynamics.
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As we’ll see, the transfer function block is a compact
notation for a composition of primitive block
diagram components.
Consider the spring-mass-dashpot system depicted in
Figure  4.  Ignoring friction, we obtain the following
equation of motion for this system:

Taking the Laplace transform and ignoring initial
conditions yields

Fkxxcxm =++ &&&

)()()()(2 sFskXscsXsXms =++
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Figure 4:  Spring-mass-dashpot system

x

F m
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Figure 5 depicts this system using primitive block
diagram components.
The ratio of the Laplace transform of the output
(X(s)) to the Laplace transform of the input (F(s)) is
the transfer function

m
ksm

cs

m
sF
sXsG

++
==

2
)/1(

)(
)()(
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Figure 5:  Block diagram of spring-mass-dashpot 
       system

F m
1 x&& x& x

s
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s
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m
k

m
c
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-
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Figure 6(a) represents the same system in transfer
function form.  The transfer function representation
is more compact, and it is useful in understanding
the system dynamics.
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Figure 6: Transfer function representations of a 
spring-mass-dashpot system

)/()/(2
)/1(

mksmcs
m

++F x F xG(s)

(a)  Transfer function block (b)  Alternate transfer
function block
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Taking the Laplace transform and ignoring initial
conditions yields

The ratio of the Laplace transform of the output
(X(s)) to the Laplace transform of the input (F(s)) is
the transfer function (G(s)):

)()()()(2 sFskXscsXsXms =++

m
ksm

cs
m

sF
sXsG

++
==

2
)/1(

)(
)()(
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Figure 8:  Forced second-order system with 
primitive blocks
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Figure 9: Forced second-order system using a 
Transfer Function block

Step
Scope
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Figure 10:  Damped second-order system response
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Stability of Transfer Functions

We say that a system is stable if any bounded input
produces a bounded output for all bounded initial
conditions.  In particular, we can use a partial
fraction expansion to decompose the total response
of a system into the response of each pole taken
separately.  For continuous-time systems, we then
see that stability requires that the poles have strictly
negative real parts, i.e., they need to be in the open
left half plane (OLHP) of the complex plane  s .
This implies that, for continuous time systems, the
stability boundary is the imaginary axis.
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Impulse and Step Responses of
Continuous-Time Linear Systems

The transfer function of a continuous time system is
the Laplace transform of its response to an impulse

(Dirac’s delta) with zero initial conditions.

The impulse function can be thought of as the limit
(∆→0) of the pulse shown on the next slide.
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Figure 4.2:  Discrete pulse
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Steady State Step Response

The steady state response (provided it exists) for a
unit step is given by

where  G(s)  is the transfer function of the system.

lim
t→∞ y(t) = y∞ = lim

s→∞ sG(s)
1
s

= G(0)
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We define the following indicators:
Steady state value,  y∞∞∞∞:  the final value of the step response

(this is meaningless if the system has poles in the CRHP).
Rise time, tr:  The time elapsed up to the instant at which the

step response reaches, for the first time, the value kry∞. The
constant kr varies from author to author, being usually
either 0.9 or 1.

Overshoot, Mp:  The maximum instantaneous amount by
which the step response exceeds its final value.  It is
usually expressed as a percentage of y∞∞∞∞
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Undershoot, Mu: the (absolute value of the) maximum
instantaneous amount by which the step response falls
below zero.

Settling time, ts: the time elapsed until the step response
enters (without leaving it afterwards) a specified deviation
band, ±δ, around the final value. This deviation δ, is
usually defined as a percentage of y∞, say 2% to 5%.
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Figure 4.3:  Step response indicators
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Poles, Zeros and Time Responses

We will consider a general transfer function of the
form

β1, β1,…, βm and α1, α2, ,,, αn are the zeros and poles
of the transfer function, respectively. The relative
degree is               .mnnr −=

∆

H(s) = K

∏m
i=1(s− βi)∏n
l=1(s− αl)
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Poles

Recall that any scalar rational transfer function can
be expanded into a partial fraction expansion, each
term of which contains either a single real pole, a
complex conjugate pair or multiple combinations
with repeated poles.
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First Order Pole

A general first order pole contributes

The response of this system to a unit step can be
computed as

H1(s) =
K

τs + 1

y(t) = L−1

[
K

s(τs + 1)

]
= L−1

[
K

s
− Kτ

τs + 1

]
= K(1 − e−

t
τ )
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Figure 4.4:  Step response of a first order system
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A Complex Conjugate Pair

For the case of a pair of complex conjugate poles, it
is customary to study a canonical second order
system having the transfer function.

H(s) =
ω2

n

s2 + 2ψωns + ω2
n
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Step Response for Canonical
Second Order Transfer Function

On applying the inverse Laplace transform we
finally obtain

Y (s) =
1
s
− s + ψωn

(s + ψωn)2 + ω2
d

− ψωn

(s + ψωn)2 + ω2
d

=
1
s
− 1√

1 − ψ2

[√
1 − ψ2

s + ψωn

(s + ψωn)2 + ω2
d

− ψ
ωd

(s + ψωn)2 + ω2
d

]

y(t) = 1 − e−ψωnt√
1 − ψ2

sin(ωdt + β)
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Figure 4.5:  Pole location and unit step response of a
                    canonical second order system.
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Zeros

The effect that zeros have on the response of a
transfer function is a little more subtle than that due
to poles.  One reason for this is that whilst poles are
associated with the states in isolation,  zeros rise
from additive interactions amongst the states
associated with different poles.  Moreover, the zeros
of a transfer function depend on where the input is
applied and how the output is formed as a function
of the states.
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Consider a system with transfer function given by

H(s) =
−s + c

c(s + 1)(0.5s + 1)
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Figure 4.6:  Effect of different zero locations on the step
                    response
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These results can be explained as we show on the next slides.
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Analysis of Effect of Zeros on
Step Response

A useful result is:
Lemma 4.1:  Let H(s) be a strictly proper function
of the Laplace variable s with region of convergence
ℜ {s} > -α. Denote the corresponding time function
by h(t),

Then, for any z0 such that ℜ {z0} > -α, we have
H(s) = L [h(t)]

∫ ∞

0

h(t)e−z0tdt = lim
s→z0

H(s)
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Non minimum phase zeros and undershoot.
Assume a linear, stable system with transfer function
H(s) having unity d.c. gain and a zero at s=c, where
c∈ !+.  Further assume that the unit step response,
y(t), has a settling time ts (see Figure 4.3) i.e.
                                                Then y(t) exhibits an
undershoot Mu which satisfies

( ) .,11)(1 sttty ≥∀<<−≥≥+ δδ

Mu ≥ 1 − δ

ects − 1
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The lemma above establishes that, when a system
has non minimum phase zeros, there is a trade off
between having a fast step response and having

small undershoot.
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Slow zeros and overshoot. Assume a linear, stable
system with transfer function H(s) having unity d.c.
gain and a zero at s=c, c<0. Define v(t) = 1 - y(t),
where y(t) is the unit step response. Further assume
that
A-1  The system has dominant pole(s) with real part
         equal to -p, p>0
A-2  The zero and the dominant pole are related by

η
�
=

∣∣∣∣ cp
∣∣∣∣ � 1
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A-3  The value of δ defining the settling time (see
Figure 4.3) is chosen such that there exists 0 < K
which yields

Then the step response has an overshoot which is
bounded below according to

|v(t)| < Ke−pt ∀t ≥ ts

Mp ≥ 1
e−cts − 1

(
1 − Kη

1 − η

)
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Frequency Response

We next study the system response to a rather special
input, namely a sine wave.  The reason for doing so
is that the response to sine waves also contains rich
information about the response to other signals.
Let the transfer function be

H(s) = K

∑m
i=0 bis

i

sn +
∑n−1

k=1 aksk

H(jω) = |H(jω)|ejφ(ω)

where

Then the steady state response to the input  sin(wt) is
y(t) = |H(jw)|sin(wt + φ(w))
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In summary:

A sine wave input forces a sine wave at the output
with the same frequency. Moreover, the amplitude of
the output sine wave is modified by a factor equal to
the magnitude of H(jw) and the phase is shifted by a

quantity equal to the phase of H(jw).
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Bode Diagrams

Bode diagrams consist of a pair of plots. One of
these plots depicts the magnitude of the frequency
response as a function of the angular frequency, and
the other depicts the angle of the frequency response,
also as a function of the angular frequency.
Usually, Bode diagrams are drawn with special axes:
❖ The abscissa axis is linear in log(w) where the log is base

10.  This allows a compact representation of the frequency
response along a wide range of frequencies. The unit on
this axis is the decade, where a decade is the distance
between w1 and 10w1 for any value of w1.
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❖ The magnitude of the frequency response is measured in
decibels [dB], i.e. in units of 20log|H(jw)|. This has several
advantages, including good accuracy for small and large
values of |H(jw)|, facility to build simple approximations
for 20log|H(jw)|, and the fact that the frequency response
of cascade systems can be obtained by adding the
individual frequency responses.

❖ The angle is measured on a linear scale in radians or
degrees.
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Drawing Approximate Bode Diagrams

❖ A simple gain K has constant magnitude and phase Bode
diagram. The magnitude diagram is a horizontal line at
20log|K|[dB] and the phase diagram is a horizontal line at
0[rad] (when K ∈ !-).

❖ The factor sk has a magnitude diagram which is a straight
line with slope equal to 20k[dB/decade] and constant
phase, equal to kπ/2. This line crosses the horizontal axis
(0[dB]) at w = 1.
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❖ The factor as + 1 has a magnitude Bode diagram which
can be asymptotically approximated as follows:

◆ for |aw|<<1, 20 log|ajw + 1| ≈ 20 log(1) = 0[dB], i.e. for low
frequencies, this magnitude is a horizontal line.  This is
known as the low frequency asymptote.

◆ For |aw|>>1, 20 log|ajw + 1| ≈ 20 log(|aw|) i.e. for high
frequencies, this magnitude is a straight line with a slope of
20[dB/decade] which crosses the horizontal axis (0[dB]) at
w = |a|-1. This is known as the high frequency asymptote.
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◆ the phase response is more complex.  It roughly changes
over two decades.  One decade below |a|-1 the phase is
approximately zero.  One decade above |a|-1 the phase is
approximately sign(a)0.5π[rad].  Connecting the points
(0.1|a|-1, 0) and (10|a|-1, 0) by a straight line, gives
sign(a)0.25 π for the phase at w = |a|-1.  This is a very
rough approximation.

❖ For a = a1 + ja2, the phase Bode diagram of the factor as
+ 1 corresponds to the angle of the complex number with
real part 1 - wa2 and imaginary part a1w.
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Example

Consider a transfer function given by

To draw the asymptotic behavior of the gain diagram
we first arrange H(s) into a form where the poles and
zeros are designated, i.e.

Then using the approximate rules gives the result
below:

H(s) = 640
(s + 1)

(s + 4)(s + 8)(s + 10)

H(s) = 2
(s + 1)

(0.25s + 1)(0.125s + 1)(0.1s + 1)
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Figure 4.7:  Exact (thick line) and asymptotic (thin line) Bode
                    plots
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Filtering

In an ideal amplifier, the frequency response would
be H(jw) = K, constant ∀ w, i.e. every frequency
component would pass through the system with
equal gain and no phase.
We define:
❖ The pass band in which all frequency components pass

through the system with approximately the same
amplification (or attenuation) and with a phase shift
which is approximately proportional to w.
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❖ The stop band, in which all frequency components are
stopped.  In this band |H(jw)| is small compared to the
value of |H(jw)| in the pass band.

❖ The transition band(s), which are intermediate between a
pass band and a stop band.
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❖ Cut-off frequency wc. This is a value of w, such that
                                     where        is respectively

◆ |H(0)|  for low pass filters and band reject filters

◆ |H(∞)| for high pass filters

◆ the maximum value of |H(jw)| in the pass band, for
band pass filters

( ) ,2/ĤjwH c = Ĥ
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❖ Bandwidth Bw.  This is a measure of the frequency width
of the pass band (or the reject band).  It is defined as Bw =
wc2 - wc1, where wc2 > wc1 ≥ 0. In this definition, wc1 and
wc2 are cut-off frequencies on either side of the pass band
or reject band (for low pass filters, wc1 = 0).
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Figure 4.8:  Frequency response of a bandpass filter



Chapter 4  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Fourier Transform

Definition of the Fourier Transform

F [f(t)] = F (jω) =
∫ ∞

−∞
e−jωtf(t)dt

F−1 [F (jω)] = f(t) =
1
2π

∫ ∞

−∞
ejωtF (jω)dω
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Table 4.3:  Fourier transform table

f(t) ∀t ∈ R F [f(t)]
1 2πδ(ω)

δD(t) 1

µ(t) πδ(ω) +
1
jω

µ(t) − µ(t− to)
1 − e−jωto

jω

eαtµ(t) 	{α} < 0
1

jω − α

teαtµ(t) 	{α} < 0
1

(jω − α)2

e−α|t| α ∈ R+ 2α
ω2 + α2

cos(ωot) π (δ(ω − ωo) + δ(ω − ωo))
sin(ωot) jπ (δ(ω + ωo) − δ(ω − ωo))

cos(ωot)µ(t) π (δ(ω − ωo) + δ(ω − ωo)) +
jω

−ω2 + ω2
o

sin(ωot)µ(t) jπ (δ(ω + ωo) − δ(ω − ωo)) +
ωo

−ω2 + ω2
o

e−αt cos(ωot)µ(t) α ∈ R+ jω + α

(jω + α)2 + ω2
o

e−αt sin(ωot)µ(t) α ∈ R+ ωo

(jω + α)2 + ω2
o
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Table 4.4:  Fourier transforms properties.  Note that Fi(jw) =
                  F[fi(t)] and Y(jw) = F[y(t)].

f(t) F [f(t)] Description
l∑

i=1

aifi(t)
l∑

i=1

aiFi(jω) Linearity

dy(t)
dt

jωY (jω) Derivative law

dky(t)
dtk

(jω)kY (jω) High order derivative∫ t

−∞
y(τ)dτ

1
jω

Y (jω) + πY (0)δ(ω) Integral law

y(t− τ) e−jωτY (jω) Delay

y(at)
1
|a|Y

(
j
ω

a

)
Time scaling

y(−t) Y (−jω) Time reversal∫ ∞

−∞
f1(τ)f2(t− τ)dτ F1(jω)F2(jω) Convolution

y(t) cos(ωot)
1
2
{Y (jω − jωo) + Y (jω + jωo)} Modulation (cosine)

y(t) sin(ωot)
1
j2

{Y (jω − jωo) − Y (jω + jωo)} Modulation (sine)

F (t) 2πf(−jω) Symmetry

f1(t)f2(t)
1

2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s− ζ)dζ Time domain product

eatf1(t) F1(jω − a) Frequency shift
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A useful result: Parseval’s Theorem

Theorem 4.1:  Let F(jw) and G(jw) denote the
Fourier transform of f(t) and g(t) respectively.  Then

∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫ ∞

−∞
F (jω)G(−jω) dω
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Table 4.5:  System models and influence of parameter
                  variations

System Parameter Step response Bode (gain) Bode(phase)

K

τs+ 1
K K

K

− π
2

τ
τ τ

τ

− π
2

ω2
n

s2 + 2ψωns+ ω2
ψ

ψ
ψ

ψ

−π

ωn

ωn
ωn

ωn

−π

as+ 1

(s+ 1)2
a

a

a

a

− π
2

−as+ 1

(s+ 1)2
a a

a

a

− 3π
2
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Modeling Errors for Linear Systems
If a linear model is used to approximate a linear system,
then modeling errors due to errors in parameters and/or
complexity can be expressed in transfer function form
as

where Gε(s) denotes the AME and G∆(s) denotes the
MME, introduced in Chapter 3.
AME and MME are two different ways of capturing the
same modeling error. The advantage of the MME is that
it is a relative quantity, whereas the AME is an absolute
quantity.

Y (s) = G(s)U(s) = (Go(s) + Gε(s))U(s) = Go(s)(1 + G∆(s))U(s)
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Example:  Time Delays

Time delays do not yield rational functions in the
Laplace domain. Thus a common strategy is to
approximate the delay by a suitable rational expression.
One possible approximation is

where k determines the accuracy of the approximation.
For this approximation, we can determine the
magnitude of the frequency response of the MME as
shown below.

e−τs ≈
(−τs + 2k

τs + 2k

)k

k ∈ 〈1, 2, . . . 〉
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Figure 4.9:  MME for all pass rational approximation of time
                  delays
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Missing resonance effect

The omission of resonant modes is very common
when modeling certain classes of systems, such as
robots, arms, antennas and other large flexible
structures. This situation may be described by

The modeling errors are now given by

G(s) =
ω2

n

s2 + 2ψωns + ω2
n

F (s) Go(s) = F (s) 0 < ψ < 1

Gε(s) =
−s(s + 2ψωn)

s2 + 2ψωns + ω2
n

F (s) G∆(s) =
−s(s + 2ψωn)

s2 + 2ψωns + ω2
n
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Figure 4.10:  MME frequency response for omitted resonance,
                     for different values of the damping factor ϕ
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Bounds for Modeling Errors

In control system design it is often desirable to
account for model errors in some way.  A typical
specification might be

where ε(w) is some given positive function of w.

|G∆(jω)| < ε(ω)
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Summary
❖ There are two key approaches to linear dynamic models:

◆ the, so-called, time domain, and
◆ the so-called, frequency domain

❖ Although these two approaches are largely equivalent, they
each have their own particular advantages and it is
therefore important to have a good grasp of each.
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❖ In the time domain,
◆ systems are modeled by differential equations
◆ systems are characterized by the evolution of their

variables (output etc.) in time
◆ the evolution of variables in time is computed by

solving differential equations
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❖ In the frequency domain,
◆ modeling exploits the key linear system property that

the steady state response to a sinusoid is again a
sinusoid of the same frequency;  the system only
changes amplitude and phase of the input in a fashion
uniquely determined by the system at that frequency,

◆ systems are modeled by transfer functions, which
capture this impact as a function of frequency.



Chapter 4  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

❖ With respect to the important characteristic of stability, a
continuous time system is

◆ stable if and only if the real parts of all poles are strictly
negative

◆ marginally stable if at least one pole is strictly
imaginary and no pole has strictly positive real part

◆ unstable if the real part of at least one pole is strictly
positive

◆ non-minimum phase if the real part of at least one zero
is strictly positive.
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❖ All models contain modeling errors.

❖ Modeling errors can be described as an additive (AME) or
multiplicative (MME) quantity.

❖ Modeling errors are necessarily unknown and frequently
described by upper bounds.


