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Topics to be covered

For a given controller and plant connected in
feedback we ask and answer the following questions:
❖   Is the loop stable?
❖   What are the sensitivities to various disturbances?
❖   What is the impact of linear modeling errors?
❖   How do small nonlinearities impact on the loop?

We also introduce several analysis tools; specifically

❖   Root locus
❖   Nyquist stability analysis
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Feedback Structures

We will see that feedback can have many desirable
properties such as the capacity to reduce the effect of
disturbances, to decrease sensitivity to model errors
or to stabilize an unstable system. We will also see,
however, that ill-applied feedback can make a
previously stable system unstable, add oscillatory
behaviour into a previously smooth response or
result in high sensitivity to measurement noise.
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Figure 5.1:  Simple feedback control system 
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In the loop shown in Figure 5.1 we use transfer
functions and Laplace transforms to describe the
relationships between signals in the loop.  In
particular, C(s) and G0(s) denote the transfer
functions of the controller and the nominal plant
model respectively, which can be represented in
fractional form as:

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)
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Laplace Transforms of System
Input and Output

and

U(s) =
C(s)

1 + Go(s)C(s)

(
R(s) − Dm(s) − Do(s) − Go(s)Di(s) − f(s, xo)

A(s)

)

Y (s) =
1

1 + Go(s)C(s)

[
Go(s)C(s)(R(s)− Dm(s)) + Do(s) + Go(s)Di(s) +

f(s, xo)
A(s)

]
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Figure 5.2:  Two degree of freedom closed loop 
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Nominal Sensitivity Functions

These functions are given specific names as follows:

To(s)
4
=

Go(s)C(s)

1 + Go(s)C(s)
=

Bo(s)P (s)

Ao(s)L(s) + Bo(s)P(s)

So(s)
4
=

1

1 + Go(s)C(s)
=

Ao(s)L(s)

Ao(s)L(s) + Bo(s)P(s)

Sio(s)
4
=

Go(s)

1 + Go(s)C(s)
=

Bo(s)L(s)

Ao(s)L(s) + Bo(s)P(s)

Suo(s)
4
=

C(s)

1 + Go(s)C(s)
=

Ao(s)P (s)

Ao(s)L(s) + Bo(s)P(s)

T0(s) : Nominal complementary sensitivity
S0(t) : Nominal sensitivity
Si0(s) : Nominal input disturbance sensitivity
Su0(s) : Nominal control sensitivity
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Relationship between sensitivities

So(s) + To(s) = 1

Sio(s) = So(s)Go(s) =
To(s)
C(s)

Suo(s) = So(s)C(s) =
To(s)
Go(s)
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Internal Stability

Definition 5.1 (Internal stability).  We say that the
nominal loop is internally stable if and only if all eight 
transfer functions in the equation below are stable.

[
Yo(s)
Uo(s)

]
=

[
Go(s)C(s) Go(s) 1 −Go(s)C(s)

C(s) −Go(s)C(s) −C(s) −C(s)

]

1 + Go(s)C(s)



H(s)R(s)

Di(s)
Do(s)
Dm(s)
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Link to Characteristic Equation

Lemma 5.1 (Nominal internal stability)
Consider the nominal closed loop depicted in Figure
5.2. Then the nominal closed loop is internally stable
if and only if the roots of the nominal closed loop
characteristic equation

all lie in the open left half plane. We call A0L + B0P
the nominal closed-loop characteristic polynomial.

Ao(s)L(s) + Bo(s)P (s) = 0
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Stability and Polynomial Analysis
Consider a polynomial of the following form:

The problem to be studied deals with the question of
whether that polynomial has any root with
nonnegative real part. Obviously, this equation can
be answered by computing the n roots of p(s).
However, in many applications it is of special
interest to study the interplay between the location of
the roots and certain polynomial coefficients.

p(s) = sn + an−1s
n−1 + . . . + a1s + a0
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Some Polynomial Properties of
Special Interest
Property 1:  The coefficient  an-1 satisfies

Property 2:  The coefficient a0 satisfies

Property 3:  If all roots of p(s) have negative real parts, it is
necessary that ai > 0, i ∈ {0, 1, …, n-1}.

Property 4:  If any of the polynomial coefficients is nonpositive
(negative or zero), then, one or more of the roots have
nonnegative real plant.

an−1 = −
n∑

i=1

λi

a0 = (−1)n
n∏

i=1

λi
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Routh’s Algorithm

The Routh’s algorithm is based on the following
numerical array:

p(s) =
n∑

i=0

ais
i

sn γ0,1 γ0,2 γ0,3 γ0,4 . . .
sn−1 γ1,1 γ1,2 γ1,3 γ1,4 . . .
sn−2 γ2,1 γ2,2 γ2,3 γ2,4 . . .
sn−3 γ3,1 γ3,2 γ3,3 γ3,4 . . .
sn−4 γ4,1 γ4,2 γ4,,3 γ4,4 . . .
...

...
...

...
...

s2 γn−2,1 γn−2,2

s1 γn−1,1

s0 γn,1

Table 5.1:  Routh’s array



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 5

Where

with m0 = (n+2)/2 and m1 = m0-1 for n even and m1 =
m0 for n odd.  Note that the elements γ0,i and γ1,i are
the coefficients of the polynomials arranged in
alternated form.  Furthermore

γ0,i = an+2−2i; i = 1, 2, . . . , m0 and γ1,i = an+1−2i; i = 1, 2, . . . , m1

γk,j =
γk−1,1 γk−2,j+1 − γk−2,1 γk−1,j+1

γk−1,1
; k = 2, . . . , n j = 1, 2, . . . , mj
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Result:

Consider a polynomial p(s) given by (5.5.8) and its
associated array as in Table 5.1.  Then the number of
roots with real part greater than zero is equal to the
number of sign changes in the first column of the
array.
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Root Locus (RL)

Another classical tool used to study stability of
equations of the type given above is root locus. The
root locus approach can be used to examine the
location of the roots of the characteristic polynomial
as one parameter is varied.
Consider the following equation

with λ ≥ 0 and M, N have degree  m, n respectively.

1 + λF (s) = 0 where F (s) =
M(s)
D(s)
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Root locus building rules include:
R1 The number of roots of the equation (1 + λF(s) = 0) is

equal to max{m,n}.  Thus, the root locus has max{m,n}
branches.

R2 From (1 + λF(s) = 0) we observe that s0 belongs to the
root locus (for λ ≥ 0) if and only if

arg F (s0) = (2k + 1)π for k ∈ Z.
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R3 From equation (1 + λF(s) = 0) we observe that if s0 belongs
to the root locus, the corresponding value of λ is λ0 where

R4 A point s0 on the real axis, i.e. s0 ∈ �, is part of the root
locus (for λ ≥ 0), if and only if, it is located to the left of an
odd number of poles and zeros (so that R2 is satisfied).

R5 When λ is close to zero, then n of the roots are located at the
poles of F(s), i.e. at p1, p2, …, pn and, if n < m, the other m -
n roots are located at ∞ (we will be more precise on this
issue below).

λ0 =
−1

F (s0)
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R6 When  λ is close to ∞, then m of these roots are located
at the zeros of F(s), i.e. at c1, c2, …, cm and, if n > m, the
other n - m roots are located at ∞ (we will be more
precise on this issue below).

R7 If n > m, and  λ tends to ∞, then, n - m roots
asymptotically tend to ∞, following asymptotes which
intersect at (σ,0), where

The angles of these asymptotes are η1, η2, …, ηm-n,
where

ηk =
(2k − 1)π

n − m
; k = 1, 2, . . . , n − m

σ =
∑n

i=1 pi −
∑m

i=1 ci

n − m
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R8 If n < m, and λ tends to zero, then, m-n roots
asymptotically tend to ∞, following asymptotes which
intersect at (σ, 0), where

The angles of these asymptotes are η1, η2, … ηm-n, where

R9 When the root locus crosses the imaginary axis, say at s =
±jwc, then wc can be computed either using the Routh
Hurwitz algorithm, or using the fact that s2 + wc

2 divides
exactly the polynomial D(s) + λ M(s), for some positive
real value of λ.

σ =
∑n

i=1 pi −
∑m

i=1 ci

m − n

ηk =
(2k − 1)π

n − m
; k = 1, 2, . . . , m − n
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Example

Consider a plant with transfer function G0(s) and a
feedback controller with transfer function C(s),
where

We want to know how the location of the closed
loop poles change for α moving in �+.

Go(s) =
1

(s − 1)(s + 2)
and C(s) = 4

s + α

s
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Figure 5.3:  Locus for the closed loop poles when the 
                   controller zero varies 
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Nominal Stability using
Frequency Response

A classical and lasting tool that can be used to assess the stability
of a feedback loop is Nyquist stability theory. In this approach,
stability of the closed loop is predicted using the open loop
frequency response of the system. This is achieved by plotting a
polar diagram of the product G0(s)C(s) and then counting the
number of encirclements of the (-1,0) point. We show how this
works below.
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Nyquist Stability Analysis
The basic idea of Nyquist stability analysis is as follows:
assume you have a closed oriented curve Cs in  s  which
encircles Z zeros and P poles of the function F(s). We assume
that there are no poles on Cs.
If we move along the curve Cs in a defined direction, then the
function F(s) maps Cs into another oriented closed curve, CF
in  F .
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Observations

Case (a):  c inside Cs

We see that as s moves clockwise along Cs, the angle
of F(s) changes by -2π[rad], i.e. the curve CF will
enclose the origin in  F  once in the clockwise
direction.

Case (b):  c outside Cs

We see that as s moves clockwise along Cs, the angle
of F(s) changes by 0[rad], i.e. the curve CF will
enclose the origin in  F  once in the clockwise
direction.
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More general result:

Consider a general function F(s) and a closed curve
Cs in  s  .  Assume that F(s) has Z zeros and P poles
inside the region enclosed by Cs.  Then as s moves
clockwise along Cs, the resulting curve CF encircles
the origin in   F  Z-P times in a clockwise direction.
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s

Cr

Ci

r → ∞

To test for poles in the Right half Plane, we choose Cs as the 
following Nyquist path

As  s  traverses the Nyquist path in  s , then we plot a polar plot 
of F = G0C.  Actually we shift the origin to “-1” so that 
encirclements of -1 count the zeros of G0C + 1 in the right 
half plane. 
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Final Result

Theorem 5.1:
If a proper open loop transfer function G0(s)C(s) has
P poles in the open RHP, and none on the imaginary
axis, then the closed loop has Z poles in the open
RHP if and only if the polar plot G0(sw)C(sw)
encircles the point (-1,0) clockwise N=Z-P times.
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Discussion
❖ If the system is open loop stable, then for the closed loop to

be internally stable it is necessary and sufficient that no
unstable cancellatgions occur and that the Nyquist plot of
G0(s)C(s) does not encircle the point (-1,0).

❖ If the system is open loop unstable, with P poles in the open
RHP, then for the closed loop to be internally stable it is
necessary and sufficient that no unstable cancellations occur
and that the Nyquist plot of G0(s)C(s) encircles the point
(-1,0) P times counterclockwise.

❖ If the Nyquist plot of G0(s)C(s) passes exactly through the
point (-1,0), there exists an w0 ∈  � such that F(jw0) = 0, i.e.
the closed loop has poles located exactly on the imaginary
axis. This situation is known as a critical stability condition.
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Figure 5.6:  Modified Nyquist path (To account for open loop
                   poles or zeros on the imaginary axis).
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Theorem 5.2 (Nyquist theorem):
Given a proper open loop transfer function
G0(s)C(s) with P poles in the open RHP, then the
closed loop has Z poles in the open RHP if and only
if the plot of G0(s)C(s) encircles the point (-1,0)
clockwise N=Z-P times when s travels along the
modified Nyquist path.
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Relative Stability:  Stability
margins and Sensitivity Peaks

In control system design, one often needs to go
beyond the issue of closed loop stability. In particular,
it is usually desirable to obtain some quantitative
measures of how far from instability the nominal loop
is, i.e. to quantify relative stability.  This is achieved
by introducing measures which describe the distance
from the nominal open loop frequency response to the
critical stability point (-1,0).
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Figure 5.7:  Stability margins and sensitivity peak
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(a)  The gain margin, Mg, and the phase margin Mf
are defined as follows (see Figure 5.7):

Mg
�
= −20 log10(|a|)

Mf
�
= φ

(b)  Peak sensitivity:
Since                     then S0 is a maximum at the
frequency where  G0(jw)C(jw) is closest to the
point -1.  The peak sensitivity is thus 1/η  - (see
Figure 5.7).

,
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Figure 5.8:  Stability margins in Bode diagrams

Frequency (rad/sec)

P
ha

se
 (

de
g)

   
   

   
   

   
   

   
   

 M
ag

ni
tu

de
 (

dB
)

Bode Diagrams

−100

−50

0

50

10
−2

10
−1

10
0

10
1

−300

−250

−200

−150

−100

−50

M
f
 

M
g
 

ω
p
 ω

g
 



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 5

Robustness

So far, we have only considered the effect that the
controller has on the nominal closed loop formed
with the nominal model for the plant.  However, in
practice, we are usually interested, not only in this
nominal performance, but also the true performance
achieved when the controller is applied to the true
plant. This is the so called “Robustness” issue.  We
will show below that the nominal sensitivities do
indeed tell us something about the true or achieved
sensitivities.
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Achieved Sensitivities

We contrast the nominal sensitivities derived
previously with the achieved (or true) sensitivities
when the controller C(s) is applied to the calibration
model, G(s). This leads to the following calibration
sensitivities:

T (s)
�
=

G(s)C(s)
1 + G(s)C(s)

=
B(s)P (s)

A(s)L(s) + B(s)P (s)

S(s)
�
=

1
1 + G(s)C(s)

=
A(s)L(s)

A(s)L(s) + B(s)P (s)

Si(s)
�
=

G(s)
1 + G(s)C(s)

=
B(s)L(s)

A(s)L(s) + B(s)P (s)

Su(s)
�
=

C(s)
1 + G(s)C(s)

=
A(s)P (s)

A(s)L(s) + B(s)P (s)
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Relationship to Modelling Errors

The achieved sensitivity functions are given in terms
of the nominal sensitivities as follows:

S(s) = So(s)S∆(s)
T (s) = To(s)(1 + G∆(s))S∆(s)
Si(s) = Sio(s)(1 + G∆(s))S∆(s)
Su(s) = Suo(s)S∆(s)

S∆(s) =
1

1 + To(s)G∆(s)

Where  G∆(s)  is the multiplicative modelling error.
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Robust Stability

We are concerned with the case where the nominal
model and the true plant differ.  It is then necessary
that, in addition to nominal stability, we check that
stability is retained when the true plant is controlled
by the same controller. We call this property robust
stability.
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Theorem 5.3 (Robust stability theorem):
Consider a plant with nominal transfer function G0(s)
and true transfer function given by G(s). Assume that
C(s) is the transfer function of a controller which
achieves nominal internal stability. Also assume that
G(s)C(s) and G0(s)C(s) have the same number of
unstable poles. Then a sufficient condition for stability
of the true feedback loop obtained by applying the
controller to the true plant is that ...
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where G∆(jw) is the frequency response of the
multiplicative modeling error (MME).

|To(jω)||G∆(jω)| =
∣∣∣∣ Go(jω)C(jω)
1 + Go(jω)C(jω)

∣∣∣∣ |G∆(jω)| < 1 ∀ω
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Proof:  Consider the Nyquist plot for the nominal and
the true loop

Go(jω)C(jω)

−1

Go(jω1)C(jω1)
1 + Go(jω1)C(jω1)

Gε(jω)C(jω)

G(jω)C(jω)
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|Gε(jω)C(jω)| < |1 + Go(jω)C(jω)| ∀ω

From that figure we see that the same number of 
encirclements occur if

this is equivalent to
|G∆(jω)Go(jω)C(jω)|
|1 + Go(jω)C(jω)| < 1

∇∇∇
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Example

In a feedback control loop, the open loop transfer
function is given by

and the true plant transfer function is

Use the Robust Stability Theorem to obtain a bound
on the (unmodelled delay) τ which guarantees closed
loop stability.

Go(s)C(s) =
0.5

s(s + 1)2

G(s) = e−sτGo(s)
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Figure 5.10:  Magnitude of the frequency response of
                     T0(s)G∆ (s) for different values of τ

Note that  |T0(jw)G∆(jw)| < 1,  ∀ w  for τ ≤ 1.5.
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Summary
❖ This chapter introduced the fundamentals of SISO

feedback control loop analysis.

❖ Feedback introduces a cyclical dependence between
controller and system:

◆ the controller action affects the systems outputs,
◆ and the system outputs affect the controller action.
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❖ Well designed, feedback can
◆ make an unstable system stable;
◆ increase the response speed;
◆ decrease the effects of disturbances;
◆ decrease the effects of system parameter uncertainties,

and more.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 5

❖ Poorly designed, feedback can
◆ introduce instabilities into a previously stable system;
◆ add oscillations into a previously smooth response;
◆ result in high sensitivity to measurement noise;
◆ result in sensitivity to structural modeling errors, and

more.


