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Analysis of SISO Control
L oops
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Topicsto be covered

For a given controller and plant connected in
feedback we ask and answer the following questions:

0 Istheloop stable?

0 What are the sensitivities to various disturbances?
0 What isthe impact of linear modeling errors?

0 How do small nonlinearities impact on the loop?

We also introduce several analysistools; specifically

[0 Root locus
0 Nyquist stability analysis
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Feedback Structures

We will see that feedback can have many desirable
properties such as the capacity to reduce the effect of
disturbances, to decrease sensitivity to model errors
or to stabilize an unstable system. We will also see,
nowever, that ill-applied feedback can make a
oreviously stable system unstable, add oscillatory
pehaviour Into a previously smooth response or
result in high sensitivity to measurement noise.
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Figure 5.1: Smple feedback control system

Di(s) Zo Dy (s)

R(s E(s) Ul(s l—l— * o+ l Y(s)
_L:O—> C(s) _()>O—> Go(s) —->© -
jis = =t

T Oj

Yo (s) 5
T D)



Chapter 5 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

In the loop shown in Figure 5.1 we use transfer
functions and L aplace transforms to describe the
relationships between signalsin the loop. In
particular, C(s) and G(s) denote the transfer
functions of the controller and the nominal plant
model respectively, which can be represented in

fractional form as;
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L aplace Transforms of System

|nput and Output
U(S) iy e GCO((Z))C(S) (R(S) o Dm(S) P DO(S) -G (S)D (8) = ijE;C)O)>
and
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Figure 5.2: Two degree of freedom closed loop
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Nominal Sensitivity Functions

Tty 2 Go(s)C(s) _ Bo(S)PAs) /7
- 1+ Go(S)C(S) Ao(S)L(S) + Bo(S)P(S)
& (s) 2 it _ AS)LEs)
G 1+Go(S)C(s) Ao(s)L(s) + Bo(s)P(s)
Ge psy Go(S) _  Bo(5)L(s)
- 1+Gy(S)C(s)  Au(s)L(s) + By(s)P(s)
sy 2 C(s) v Ao(sS)P(s)

1+ Go(S)C(S)  Ao(S)L(S) + Bo(S)P(s)

These functions are given specific names as follows:

To(S) : Nominal complementary sensitivity
S(t) :  Nominal sensitivity
SHE) . Nominal input disturbance sensitivity

So(s :  Nominal control sensitivity
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Relationship between sensitivities
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Internal Stability

Definition 5.1 (Internal stability). We say that the
nominal loop isinternally stable if and only if all eight
transfer functions in the equation below are stable.

[Go(s)C(s) Go(s) 1 —Go(s)C(s)| [H(s)R(s)]
[Yo(s)] e —G,o(5)C(s) —C(s) —C(s) D;(s)
Uo(s) 1+ Go(s)C(s) 50((8))
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Link to Characteristic Equation

Lemma 5.1 (Nominal internal stability)

Consider the nominal closed loop depicted in Figure
5.2. Then the nominal closed loop Is internally stable
If and only if the roots of the nominal closed loop
characteristic equation

As(s)L(s) + Bo(s)P(s) =0
all liein the open left half plane. We call AjL + B,P
the nominal closed-loop characteristic polynomial.
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Stability and Polynomial Analysis

Consider a polynomial of the following form:

p(s) =s" + G S A S e

The problem to be studied deals with the question of
whether that polynomial has any root with
nonnegative real part. Obviously, this equation can
be answered by computing the n roots of p(s).
However, in many applicationsit is of special
Interest to study the interplay between the location of
the roots and certain polynomial coefficients.
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Some Polynomial Properties of
Special Interest

Property 1. The coefficient a_, satisfies
i s Z >\7,
=)
Property 2: The coefficient a, satisfies
ag — (_1)n H )\@
G

Property 3. If al roots of p(s) have negative real parts, it Is
necessary that a, > 0,1 [}{0, 1, ..., n-1}.

Property 4. If any of the polynomial coefficients is nonpositive
(negative or zero), then, one or more of the roots have
nonnegative real plant.
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Routh’s Algorithm

p(s) = Z a;s"
The Routh’ s algorithm is based on the following

numerical array:

S 70,1
Sn—l Y11
sMo2itn
5172 Y3,1
e e
52 N0
st Ayl 1
SO Nt

Table5.1: Routh’sarray

70,2
P
Sk
A
S

2.2

70,3
3
N2
B3
27 e

70,4
g
V2,4
s
V4,4
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Where

7Y0,: = An4+2—24; g 1, 2, =iy {10 and B Wt T =l P R 1, 2, raptr i f A

with m, = (n+2)/2 and m; = my-1 for neven and m, =
m, for nodd. Note that the elementsy,; andy, ; are
the coefficients of the polynomials arranged in
alternated form. Furthermore

ot A B e T RS e :
Vk,j — : k=2 apam e L0 T
Yk—1,1
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Result;

Consider a polynomial p(s) given by (5.5.8) and its
assoclated array asin Table 5.1. Then the number of
roots with real part greater than zero is equal to the
number of sign changes in the first column of the
array.
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Root Locus (RL)

Another classical tool used to study stability of
equations of the type given above isroot locus. The
root |ocus approach can be used to examine the
location of the roots of the characteristic polynomial
as one parameter Is varied.

Consider the following equation

1+ AF(s)=0 where F(s) =

with A = 0 and M, N have degree m, n respectively.
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Root locus building rules include:

R1 The number of roots of the equation (1 + AF(s) =0) is

equal to max{m,n}. Thus, the root locus has max{ m,n}
branches.

R2 From (1 + AF(s) = 0) we observe that s, belongsto the
root locus (for A = 0) if and only If

arg F'(sg) = 2k + )7 for k€ Z.
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R3 From equation (1 + AF(s) = 0) we observe that if s, belongs
to the root locus, the corresponding value of A IS A, where

~1
4 F(so)
R4 A point s,onthereal axis, i.e. s, LR, is part of the root
locus (for A = 0), If and only if, it is located to the left of an

odd number of poles and zeros (so that R2 is satisfied).

R5 When A iscloseto zero, then n of the roots are located at the
poles of F(s), I.e. a py, P, -.-, Py @Nd, If N <m, the other m -
n roots are located at co (we will be more precise on this
Issue below).



Chapter 5

©Goodwin, Graebe, Salgado, Prentice Hall 2000

R6 When A iscloseto oo, then m of these roots are |located

R7

a the zeros of F(s),1.e. at ¢,, C,, ..., C,,and, if n>m, the
other n - mroots are located at c (we will be more
precise on this issue below).

If N> m, and A tendsto o, then, n - m roots

asymptotically tend to oo, following asymptotes which
Intersect at (o,0), where

Z?:l Pes 221 Ci

n—m

(=

The angles of these asymptotes are 17,, 175y .-y D
where
2k~ 1w

nk: 5 k:172,...,n—m
n—1m
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If n< m, and A tends to zero, then, m-n roots
asymptotically tend to oo, following asymptotes which
Intersect at (o, 0), where

2?21 Bivr Z:il Cq

Gi=EE

m —n
The angles of these asymptotes are 17,, 17,, ... N Where
nk_—_(Qk_1>7T; k=12 = nn—n
n—1m

R9 When the root locus crosses the imaginary axis, say at S =

+|w,, then w, can be computed either using the Routh
Hurwitz algorithm, or using the fact that * + w.? divides
exactly the polynomial D(s) + A M(s), for some positive
real value of A.
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Example

Consider a plant with transfer function G4(s) and a
feedback controller with transfer function C(s),
where

Go(s) = i 1)1(5 oy and C(s) = 42 —; i

We want to know how the location of the closed
loop poles change for a moving in R*



o

SIXy Bew|
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Nominal Stability using
Frequency Response

A classical and lasting tool that can be used to assess the stability
of afeedback loop is Nyquist stability theory. In this approach,
stability of the closed loop is predicted using the open loop
frequency response of the system. Thisis achieved by plotting a
polar diagram of the product G,(s)C(s) and then counting the

number of encirclements of the (-1,0) point. We show how this
works below.
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Nyquist Stability Analysis

The basic idea of Nyquist stability analysisis as follows:

assume you have a closed oriented curve C. in|s|which
encircles Z zeros and P poles of the function F(s). We assume
that there are no poleson C..

If we move along the curve C, in a defined direction, then the

function F(s) maps C. into another oriented closed curve, C
in |F|.
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llTustration: Single zero function and Nyquist path C, In |S

A A
g V €;
@c}
Moo . ; R Fiih
a) b)

cinside C coutside C,
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Observations

Case(a): cinside C,

nat as s moves clockwise along C, the angle
nanges by -2mjrad], i.e. the curve Cg will

We seet
of F(s) c

encloset

Ne originin

direction.

=

Case (b): coutside C_

We seet
of F(s) c

encloset
direction

neoriginin

=

©Goodwin, Graebe, Salgado, Prentice Hall 2000

once in the clockwise

nat as s moves clockwise along C, the angle
nanges by O[rad], i.e. the curve C. will

once in the clockwise
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More general result:

Consider a general function F(s) and a closed curve
C.in|s|. Assume that F(s) has Z zeros and P poles
Inside the region enclosed by C.. Then as s moves

clockwise along C,, the resulting curve C encircles
the originin |F| Z-Ptimesin a clockwise direction.
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To test for polesin the Right half Plane, we choose C, as the
following Nyquist path

As s traversesthe Nyquist path in| s|, then we plot a polar plot
of F = G,C. Actually we shift the origin to “-1" so that

encirclements of -1 count the zeros of G,C + 1 in the right
half plane.
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Final Result

Theorem 5.1:

If & proper open loop transfer function G4(s)C(s) has
P poles in the open RHP, and none on the imaginary
axis, then the closed loop has Z poles in the open
RHP if and only If the polar plot G4(s,)C(s,)
encircles the point (-1,0) clockwise N=Z-P times.
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Discussion

0 If the system is open loop stable, then for the closed loop to
be internally stable it is necessary and sufficient that no
unstable cancellatgions occur and that the Nyquist plot of
G(s)C(s) does not encircle the point (-1,0).

0 If the system is open loop unstable, with P poles in the open
RHP, then for the closed loop to be internally stableit is
necessary and sufficient that no unstable cancellations occur
and that the Nyquist plot of G,(s)C(s) encircles the point
(-1,0) P times counter clockwise.

0 If the Nyquist plot of G,(s)C(s) passes exactly through the
point (-1,0), there exists an w,, L1 R such that F(jw,) =0, i.e.
the closed loop has poles |ocated exactly on the imaginary
axis. This situation is known as acritical stability condition.
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Figure 5.6: Modified Nyquist path (To account for open loop
poles or zeros on the imaginary axis).
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Theorem 5.2 (Nyquist theorem):

Given a proper open loop transfer function
Gy(S)C(s) with P polesin the open RHP, then the
closed loop has Z polesin the open RHP if and only
If the plot of G,(s)C(s) encircles the point (-1,0)
clockwise N=Z-P times when stravels along the
modified Nyquist path.
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Relative Stability: Stability
margins and Sensitivity Peaks

In control system design, one often needsto go
beyond the issue of closed loop stability. In particular,
It Is usually desirable to obtain some quantitative
measures of how far from instability the nominal loop
IS, 1.e. to quantify relative stability. Thisis achieved
by introducing measures which describe the distance
from the nominal open loop frequency response to the
critical stability point (-1,0).
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Figure 5.7: Sability margins and sensitivity peak

Gain and Phase Margins Peak Sensitivity
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(@ Thegan margin, M, and the phase margin M
are defined as follows (see Figure 5.7).

A
M, = —20 log10(|a|)

A
M=o

(b) Peak sensitivity'

SlnceSO—1 thens)lsamammumatthe

frequency whePe Gy(Jw)C(jw) Is closest to the
point -1. The peak sensitivity isthus '/, - (see

Figure 5.7).
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Robustness

So far, we have only considered the effect that the
controller has on the nominal closed loop formed
with the nominal model for the plant. However, In
practice, we are usually interested, not only in this
nominal performance, but also the true performance
achieved when the controller is applied to the true
plant. Thisisthe so called “Robustness’ issue. We
will show below that the nominal sensitivities do
Indeed tell us something about the true or achieved
sensitivities.
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Achieved Sengitivities

We contrast the nominal sensitivities derived
previously with the achieved (or true) sensitivities
when the controller C(s) Is applied to the calibration
model, G(s). This leads to the following calibration

sensitivities:
T(s) & G(s)C(s) _ B(s)P(s)
1+ G(s)C(s)  A(s)L(s) + B(s)P(s)
§(s) 2 1 A(s)L(s)
1+ G(s)C(s) A(S)L(s) + B(s)P(s)
S,(s) 2 Gr(s) 0 B(s)L(s)
¢ 14+ G(s)C(s)  A(s)L(s)+ B(s)P(s)
Gaye Cla) i A(s)P(s)
;- 14+ G(s)C(s) A(s)L(s) + B(s)P(s)
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Relationship to Modelling Errors

The achieved sensitivity functions are given in terms
of the nominal sensitivities asfollows:

W

ot e
»w O
IEEHL =g ]
2
Q
V)

@)

e R

W B N 1 T AT T I B
heL s \/\C{D/vv

»

V)

N
P

Where G,(s) Isthe multiplicative modelling error.
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Robust Stability

We are concerned with the case where the nominal
model and the true plant differ. It isthen necessary
that, in addition to nominal stability, we check that
stability is retained when the true plant is controlled
by the same controller. We call this property robust
stability.
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Theorem 5.3 (Robust stability theorem):

Consider a plant with nominal transfer function G(s)
and true transfer function given by G(s). Assume that
C(s) isthe transfer function of a controller which
achieves nominal internal stability. Also assume that
G(s)C(s) and G,4(S)C(s) have the same number of
unstable poles. Then a sufficient condition for stability
of the true feedback |oop obtained by applying the
controller to the true plant isthat ...



Chapter 5 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

Go(jw)C(jw)
1+ Go(jw)C(jw)

To(gw)||Ga(jw)| = Ga(jw)l <1 Vw

where G, (Jw) Is the frequency response of the
multiplicative modeling error (MME).
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Proof: Consider the Nyquist plot for the nominal and
the true loop

v Go(jwl)C(jw1)
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From that figure we see that the same number of
encirclements occur if

Ge(jw)C(jw)| < 1 + Go(jw)C(jw)] Vw
thisis eguivalent to

Ga(jw)Go(Jw)C(jw)

T+ C,Gw)00
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Example

In afeedback control loop, the open loop transfer
function is given by

0.5
s(s+1)2

Go(s)C(s) =

and the true plant transfer function is
G(s) = e TGy(s)

Use the Robust Stability Theorem to obtain a bound
on the (unmodelled delay) rwhich guarantees closed
loop stability.



Chapter 5 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

Figure 5.10: Magnitude of the frequency response of
T5(9G, (s) for different values of 7

Magnitude

10

- | T
Frequency [rad/s]

Notethat |T,(jw)G,(jw)| <1, Ow fort < 1.5.
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Summary

0 This chapter introduced the fundamentals of SISO
feedback control loop analysis.

0 Feedback introduces a cyclical dependence between
controller and system:

5 the controller action affects the systems outputs,
5 and the system outputs affect the controller action.
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0 Well designed, feedback can
5 make an unstable system stable;
1 Increase the response speed;
1 decrease the effects of disturbances,

1 decrease the effects of system parameter uncertainties,
and more.
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0 Poorly designed, feedback can

®

O

O

Introduce instabilities into a previously stable system;
add oscillations into a previously smooth response;
result in high sensitivity to measurement noise;

result in sensitivity to structural modeling errors, and
more.



