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Chapter 8

Fundamental DesignFundamental Design
Limitations in SISO ControlLimitations in SISO Control
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This chapter examines those issues that limit the achievable
performance in control systems. The limitations that we
examine here include
❖   Sensors
❖   Actuators

◆ maximal movements
◆ minimal movements

❖   Model deficiencies
❖   Structural issues, including

◆ poles in the ORHP
◆ zeros in the ORHP
◆ zeros that are stable but close to the origin
◆ poles on the imaginary axis
◆ zeros on the imaginary axis.
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An understanding of these limitations is central to
understanding control system design.  Indeed, it is
often more important to know what cannot be
achieved (and why) than it is to generate a particular
solution to a given problem.
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Sensors

Sensors are a crucial part of any control system
design, since they provide the necessary information
upon which the controller action is based.  They are
the eyes of the controller. Hence, any error, or
significant defect, in the measurement system will
have a significant impact on performance.
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Noise

The effect of measurement noise in the nominal loop
is given by

Also, we recall that  T0(s) is typically near 1 over the
bandwidth of the system.  Thus, given the fact that
noise is typically dominated by high frequencies,
measurement noise usually sets an upper limit on the
bandwidth of the loop.

Ym(s) = −To(s)Dm(s)
Um(s) = −Suo(s)Dm(s)
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Actuators

If sensors provide the eyes of control, then actuators
provide the muscle.  However, actuators are also a
source of limitations in control performance.  We
will examine two aspects of actuator limitations.
These are maximal movement, and minimal
movement.
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Maximal Actuator Movement

Recall that in a one d.o.f. loop, the controller output
is given by

If the loop bandwidth is much larger than that of the
open loop model  G0(s), then the transfer function
Su0(s) will significantly enhance the high frequency
components in R(s) and D0(s).

U(s) = Suo(s)(R(s) − Do(s)) where Suo(s)
�
=

To(s)
Go(s)
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Example:

Consider a plant and associated closed loop given by

Note that the plant and the closed loop bandwidths
have a ratio of approximately 10:1.  This will be
reflected in large control sensitivity,  |Su0(jw)|, at
high frequencies, which, in turn, will yield large
initial control response in the presence of high
frequency reference signals or disturbances.
This is illustrated on the next slide.

Go(s) =
10

(s + 10)(s + 1)
and To(s) =

100
s2 + 12s + 100
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Figure 8.1:  Effects of a large ratio closed loop
bandwidth to plant bandwidth
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The left hand plot shows that the control sensitivity
grows significantly at high frequencies.  The input signal
resulting from a unit step disturbance is shown on the 
right hand plot.  Note that the initial value of the input
is approximately ten times the size of the steady state
input needed to cancel the input.
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Conclusion:

To avoid actuator saturation or slew rate problems,
it will generally be necessary to place an upper limit

on the closed loop bandwidth.
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Minimal Actuator Movement

We learned above that control loop performance is
limited by the maximal available movement
available from actuators.  This is heuristically
responsible.  What is perhaps less obvious is that
control systems are often also limited by minimal
actuator movements.
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Example: Continuous Casting

Consider again the mould level controller illustrated in
the following slides.  It is known that many mould
level controllers in industry exhibit poor performances
in the form of self-sustaining oscillations.  See for
example the real data shown in Figure 8.2.  Many
explanations have been proposed for this problem.
However, at least on the system with which the
authors are familiar, the difficulty was directly
traceable to minimal movement issues associated with
the actuator.  (The slide gate valve)
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Continuous Casting Machine



Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 8

Schematic diagram
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Mould Level

Cooling Water



Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 8

Figure 8.2:  Chart recording showing oscillations in
conventional mould level control system

The above oscillations result from the slide gate valve
sticking until the level reaches some level, then the valve
moves and the level ramps in the alternative direction
until the error is again sufficient to move the valve.
(Remedies for this problem will be discussed later).
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Disturbances

Another source of performance limitation in real
control systems is that arising from disturbances.
This effect too can be evaluated using the
appropriate loop sensitivity functions.

We observe that, to achieve acceptable performance
in the presence of disturbances, it will generally be

necessary to place a lower bound on the closed loop
bandwidth.

Y (s) = Sio(s)Di(s) + So(s)Do(s)
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Model Error Limitations
Another key source of performance limitation is due to
inadequate fidelity in the model used as the basis of
control system design.  This was discussed in Chapter
5. A key function used to quantify these differences is
the error sensitivity  S∆(s), given by

where  G∆(s)  is the multiplicative (or relative) model
error.  We conclude that:
To achieve acceptable performance in the presence of
model errors, it will generally be desirable to place an

upper limit on the closed loop bandwidth.

S∆(s) =
1

1 + To(s)G∆(s)
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Structural Limitations

The above analysis of limitations has focussed on issues
arising from the actuators, sensors and model accuracy.
However, there is another source of errors arising from
the nature of the plant.  Specifically we have:
General Ideas:  Performance in the nominal linear
control loop is also subject to unavoidable constraints
which derive from the particular structure of the nominal
model itself.  We discuss:

◆ delays
◆ open loop zeros
◆ open loop poles
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Delays

Undoubtedly the most common source of structural
limitation in process control applications is due to
process delays.  These delays are typically associated
with the transportation of materials from one point to
another.  We have seen in Chapter 7, that the output
sensitivity can, at best, be given by:

Where  τ  is the delay.
To achieve this ideal result requires use of a Smith
Predictor plus ideal controller.

S∗
o (s) = 1 − e−sτ
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If we were to achieve the idealized result, then the
corresponding nominal complementary sensitivity
would be

This has gain 1 at all frequencies.  Hence high
frequency model errors will lead to instability unless
the bandwidth is limited.  Errors in the delay are
particularly troublesome.  We thus conclude:

T ∗
o (s) = e−sτ
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(i) Delays limit disturbance rejection by requiring that a
delay occur before the disturbance can be cancelled.  
This is reflected in the ideal sensitivity   S0

*(s);

(ii) Delays further limit the achievable bandwidth due to 
the impact of model errors.
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An interesting question which arises in this context is whether
it is worthwhile using a Smith Predictor in practice.
The answer is probably yes if the system model (especially
the delay) are accurately known.  However, if the delay is
poorly known, then robustness considerations limit the
achievable bandwidth even if a Smith Predictor is used.
Specifically, if the delay is known to say η ∗ 100%, then the
bandwidth is limited to the order of 1/ητ  .  Say η =1/3, then this
gives a bandwidth of approximately 3/τ.  On the other hand, a
simple PID controller can probably achieve a bandwidth of
4/τ.  Thus, one can see that accurate knowledge of the system
model and delay is a precursor to gaining advantages from
using a Smith Predictor.
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Example 8.3:  Thickness control in rolling mills

We recall the example of thickness control in rolling mills as
mentioned in Chapter 1  (see next slide for photo).  A schematic
diagram for one stand of a rolling mill is given in Figure 8.3.
In Figure 8.3 we have used the following symbols:

F - Roll Force  σ  - unloaded roll gap
H - input thickness V - input velocity
h - exit thickness),  v - exit velocity
hm - measured exit thickness,
d - distance from mill to exit thickness measurement.

The distance from the mill to output thickness measurement
introduces a (speed dependent) time delay of  (d/v).  This
introduces a fundamental limit to the controlled performances as
described above.
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A modern rolling mill
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Figure 8.3:  Rolling mill thickness control
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Open Loop Poles and Zeros

We next study the effect of open loop poles and
zeros on achievable performance.  We shall see that
open loop poles and zeros have a dramatic (and
predictable) effect on closed loop performance.

We begin by examining the so-called interpolation
constraints which show how open loop poles and
zeros are reflected in the poles and zeros of the
various closed loop sensitivity functions.
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Interpolation Constraints
We recall that the relevant nominal sensitivity
functions for a nominal plant
and a given unity feedback controller
are given below

)(
)(

0 0
0)( sA

sBsG =

)(
)()( sL

sPsC =

To(s) =
Go(s)C(s)

1 + Go(s)C(s)
=

Bo(s)P (s)
Ao(s)L(s) + Bo(s)P (s)

So(s) =
1

1 + Go(s)C(s)
=

Ao(s)L(s)
Ao(s)L(s) + Bo(s)P (s)

Sio(s) =
Go(s)

1 + Go(s)C(s)
=

Bo(s)L(s)
Ao(s)L(s) + Bo(s)P (s)

Suo(s) =
C(s)

1 + Go(s)C(s)
=

Ao(s)P (s)
Ao(s)L(s) + Bo(s)P (s)
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Observations:
(i) The nominal complementary sensitivity T0(s) has a zero

at all uncancelled zeros of  G0(s).

(ii) The nominal sensitivity S0(s) is equal to one at all
uncancelled zeros of G0(s).  (This follows from (i) using
the identity S0(s) + T0(s) = 1).

(iii) The nominal sensitivity S0(s) has a zero at all
uncancelled poles of G0(s).

(iv) The nominal complementary sensitivity T0(s) is equal to
one at all uncancelled poles of  G0(s).  (This follows
from (iii) and the identity  S0(s) + T0(s) = 1).
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We next show how these interpolation constraints
lead to performance limits.
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Effect of Open Loop Integrators
Lemma 8.1:  We assume that the plant is controlled in a
one-degree-of-freedom configuration and that the open loop
plant and controller satisfy:

i.e., the plant-controller combination has  i  poles at the
origin.  Then, for a step output disturbance or step set point,
the control error, e(t) satisfies

Ao(s)L(s) = si(Ao(s)L(s))′ i ≥ 1
lim
s→0

(Ao(s)L(s))′ = c0 �= 0

lim
s→0

(Bo(s)P (s)) = c1 �= 0

lim
t→∞ e(t) = 0 ∀i ≥ 1
∞∫

0

e(t)dt = 0 ∀i ≥ 2



Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 8

Also, for a negative unit ramp output disturbance or
a positive unit ramp reference, the control error, e(t),
satisfies

lim
t→∞ e(t) =

c0

c1
for i = 1

lim
t→∞ e(t) = 0 ∀i ≥ 2

∞∫

0

e(t)dt = 0 ∀i ≥ 3
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Equal Area Result
CG contains double integrator

S has double zero at  s = 0
Hence

0
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The above conclusion holds for a one-degree-of-
freedom feedback control system.  Later in these
slides we show that overshoot  can actually be
avoided if the architecture is changed to a two-
degree-of-freedom control system.
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Consequences
Say that we want to eliminate the effect of ramp input
disturbances in steady state.  This can be achieved by
placing 2 integrators in the controller.  However, we
then see that the error to a step reference change must
satisfy

This, in turn, implies that the error must change sign, i.e.
overshoot must occur.
Thus it is impossible to have zero steady state error to
ramp type input disturbances together with no overshoot
to a step reference.

�
∞ =0 0)( dtte
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More General Effects of Open Loop
Poles and Zeros

The results above depend upon the zeros of the
various sensitivity functions at the origin.  However,
it turns out that zeros in the right half plane have an
even more dramatic effect on achievable transient
performances of feedback loops.
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Lemma 8.3:  Consider a feedback control loop
having stable closed loop poles located to the left of
-α for some α > 0.  Also assume that the controller
has at least one pole at the origin.  Then, for an
uncancelled plant zero  z0  or an uncancelled plant
pole  η0 to the right of the closed loop poles, i.e.
satisfying  �{z0} > - α  or  �{η0} > - α
respectively, we have  …..
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(i) For a positive unit reference step or a negative
unit step output disturbance, we have

(ii) For a positive unit step reference and for  z0  in
the right half plane, we have

∞∫

0

e(t)e−z0tdt =
1
z0

∞∫

0

e(t)e−η0tdt = 0

∞∫

0

y(t)e−z0tdt = 0
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(iii) For a negative unit step input disturbance, we
have

∞∫

0

e(t)e−z0tdt = 0

∞∫

0

e(t)e−η0tdt =
L(η0)

η0P (η0)
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Observations

The above integral constraints show that
(irrespective of how the closed loop control system is
designed) the closed loop performance is constrained
in various ways.
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Specifically

(1) A real stable (LHP) zero to the right of all closed
loop poles produces overshoot in the step response.

(2) A real unstable (RHP) zero always produces
undershoot in the step response.  The amount of
undershoot grows as the zero approaches the
origin.

(3) Any real open loop pole to the right of all closed
loop poles will produce overshoot - in a one-
degree-of-freedom control architecture.
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We conclude that, to avoid poor closed loop transient
performance:-
(1)  The bandwidth should in practice be set less than the 
       smallest non minimum phase zero.

(2)  It is advisable to set the closed loop bandwidth greater
       than the real part of any unstable pole.
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Example:

Consider a nominal plant model given by

The closed loop poles were assigned to  {-1, -1, -1}.
Then, the general controller structure is given by

Five different cases are considered.  They are
described in Table 8.1.

Go(s) =
s − zp

s(s − pp)

C(s) = Kc
s − zc

s − pc
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Table 8.1:  Case description

Case 1 Case 2 Case 3 Case 4 Case 5
pp = −0.2 pp = −0.5 pp = −0.5 pp = 0.2 pp = 0.5
zp = −0.5 zp = −0.1 zp = 0.5 zp = 0.5 zp = 0.2

Kc 1.47 20.63 −3.75 −18.8 32.5
pc −1.33 18.13 −6.25 −22.0 29.0
zc −1.36 −0.48 −0.53 −0.11 0.15



Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 8

Figure 8.3:  Plant output, y(t) for five different pole-
zero configurations
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Case 1:  (Small stable pole).  A small amount of
overshoot is evident as predicted.

Case 2:  (Very small stable zero).  Here we see a
very large amount of overshoot, as
predicted.

Case 3:  (Unstable zero, stable pole).  Here we see a
significant amount of undershoot.
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Case 4:  (Unstable zero, small unstable pole).  We
observe significant undershot due to the RHP
zero.  We also observe significant overshoot
due to the unstable open loop pole.

Case 5: (Small unstable zero, large unstable pole).
We observe undershoot due to the RHP zero
and overshoot due to the RHP pole.  In this
case, the overshoot is significantly larger than
in Case 4, due to the fact that the unstable pole
is further into the RHP.
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Effect of Imaginary Axis Poles
and Zeros

An interesting special case of Lemma 8.3 occurs
when the plant has poles or zeros on the imaginary
axis.
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Consider a closed loop system as in Lemma 8.3, then for
a unit step reference input:
(a)  if the plant G(s) has a pair of zeros at ±jw0, then

(b) if the plant G(s) has a pair of poles at ±jw0, then

where  e(t)  is the control error, i.e.

∫ ∞

0

e(t) cosω0tdt = 0
∫ ∞

0

e(t) sin ω0tdt =
1
ω0

∫ ∞

0

e(t) cosω0tdt = 0
∫ ∞

0

e(t) sin ω0tdt = 0

e(t) = 1 − y(t)
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We see from the above formula that the maximum
error in the step response will be very large if one
tries to make the closed loop bandwidth greater than
the position of the resonant zeros.

We illustrate by a simple example:
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Example:

As a simple numerical example, consider a feedback
control loop with complementary sensitivity transfer
function given by

Note that the closed loop poles are all at  -1,  while
the zeros are at ±j0.1.  The simulation response of
e(t)  for a unit step input is shown in Figure 8.5 on
the next slide.

T (s) =
100s2 + 1

s3 + 3s2 + 3s + 1
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Figure 8.5:  Control error for a feedback loop with
unit step reference and imaginary zeros
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We see that the maximum error in the transient response
is very large.  No fancy control methods can remedy
this problem since it is fundamental.  (See the previous
integral constraints).
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An Industrial Application (Hold-
Up Effect in Reversing Mill)

Here we study a reversing rolling mill.  In this form
of rolling mill the strip is successively passed from
side to side so that the thickness is successfully
reduced on each pass.

For a photo of a reversing mill see the next slide.
For a schematic diagram of a single stand reversing
rolling mill, see Figure 8.6.
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Single Stand Reversing Mill
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Figure 8.6:  Schematic of Reversing Mill
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Despite great efforts to come up with a suitable
design, the closed loop response of these systems
tends to start out fast but then tends to hold-up.  A
typical response to a step input disturbance is shown
schematically in Figure 8.7.
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Figure 8.7:  Hold-up effect
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The reader may wonder:
     1. How the above result occurs, and
     2. How it can be remedied.

To answer this question, we build a model for the
system.  The associated Simulink diagram is shown
on the next slide.
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Block diagram of linearized model
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Discussion

The transfer function from roll gap (σ) to exit
thickness (h)  turns out to be of the following form
(where we have taken a specific real case):

We see (perhaps unexpectedly) that this transfer
function has two zeros located at s = -0.5 ± j86
which are (almost) on the imaginary axis.

These zeros are shown on the pole-zero plot on the
next slide.

Ghσ(s) =
26.24(s + 190)(s + 21 ± j11)(s + 20)(s + 0.5 ± j86)
(s + 143)(s + 162 ± j30)(s + 30 ± j15)(s + 21 ± j6)
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Poles and zeros configuration of
linear model

!

!

(Note the two imaginary axis zeros marked  ! )

The corresponding frequency response shows a dip at the
frequency of the imaginary axis zeros (see next slide).
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Frequency response of ThS
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A physical explanation for the zeros is provided by
thickness-tension interactions.  This is described on
the next slide.
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Strip acts
as

a spring
Rough calculation:  Resonant Frequency

         90 Rad Sec-1

h

Slip turns these resonant poles into imaginary axis zeros. 
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Next, recall the fundamental limitations arising from
imaginary axis zeros.  These are summarized on the
next slide.
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In our case   ω0 = 90 rad sec-1

( ) 0)(0 0 =�
∞ dttetCos ω

15 30
t

m.secs

Cos  ω0t

Only 2 Possibilities
� e(t)  changes sign quickly with large -ve values

or
� e(t)  remains large in the period 15-30 msec.
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Our previous analysis therefore suggests that the 2
(near) imaginary axis zeros will place fundamental
limitations on the closed loop response time if
significantly bad transients are to be avoided.  Also,
these limitations are fundamental, i.e. no fancy
control system design can remedy the problem.
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Simulations were carried out with the following
three PI controllers.  (These were somewhat
arbitrarily chosen but the key point here is that the
issue of the hold-up effect is fundamental.  In
particular, no controller can improve the situation at
least without some radical change !).

C1(s) =
s + 50

s
C2(s) =

s + 100
s

C3(s) =
s + 500

s
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Figure 8.8:  Response to a step change in the strip
input thickness
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Observations

We see that, as we attempt to increase the closed
loop bandwidth (i.e. reduce the closed loop transient
time) so the response deteriorates.  This is in line
with our previous predictions.
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Remedies
We next turn to the question of what remedial action one can
take to overcome the kinds of limitations discussed above.
Because these are fundamental limits, one really only has two
options:
(i)  Live with the limitations but ensure that the 
      design makes the best of the situation in terms of
      the desired performance goals;  or
(ii) Modify the very nature of the problem by changing the system
      either through

- new sensors
- new actuators, or
- alternative architectural arrangements.

We will expand on point (ii) next.
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Alternative Sensors

If the sensors are a key stumbling block then
alternative sensors may be needed.  One idea that has
great potential in control engineering is to use other
sensors to replace (or augment) a poor sensor.  When
other sensors are used together with a model to infer
the value of a missing or poor sensor, we say we
have used a virtual or soft sensor.
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Thickness control in rolling mills
revisited

We illustrate the use of virtual sensors by returning
to Example 8.3 (Rolling Mill Thickness Control).
We recall, in that example, that the delay between
the mill and thickness measuring device was the
source of a fundamental limit in rolling mill
thickness performance.

The solution to this problem is to replace the real
measurement of exit thickness by a virtual sensor
which does not suffer from the delay problem.
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Development of Virtual Sensor

The force,  F  can be related to the thickness h and
the roll gap σ via a simple spring equation of the
form.

Then an essentially instantaneous estimate of  h(t)
can be obtained by inverting to give:

This estimator for existing thickness is called a
BISRA gauge and is extremely commonly used in
practice.

F (t) = M(h(t) − σ(t))

ĥ(t) =
F (t)
M

+ σ(t)
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An alternative virtual sensor

Another possible virtual sensor is described below:
It turns out that the strip width is essentially constant in
most mills.  In this case, conservation of mass across
the roll gap leads to the relationship

where  V, H, v, h  denotes the input velocity, input
thickness, exit velocity, and exit thickness respectively.
We can estimate the exit thickness from:

V (t)H(t) � v(t)h(t)

ĥ(t) =
V (t)H(t)

v(t)
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Actuator Remedies

Some potential strategies for mitigating the effect of
a given poor actuator include:
(i) One can sometimes model the saturation effect and apply

an appropriate inverse to ensure appropriate control is
executed with a poor actuator.

(ii) One can sometimes put a high gain control loop locally
around the offending actuator.  This is commonly called
Cascade Control.  (This is discussed further in Chapter 10).

(iii) One can sometimes arrange the hardware so that the
actuator limitation is removed or, at least reduced.
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We study below a special way of arranging the
control law to mitigate the bad effects of controller
saturation.
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Anti-Windup Mechanisms

When an actuator is limited in amplitude or slew
rate, then one can often avoid the problem by
reducing the performance demands.  However, in
other applications it is desirable to push the actuator
hard up against the limits so as to gain the maximum
benefit from the available actuator authority.  This
makes the best of the given situation.  However,
there is a down-side associated with this strategy.
In particular, one of the costs of driving an actuator
into a maximal limit is associated with the problem
of integral wind-up.
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In particular, when the input is saturated the control is
constant and hence the error cannot be reduced.  Under
these conditions, the  I  term in the PID controller will
grow leading to poor transient/response.  This is called
wind-up.
For the moment it suffices to remark that the core idea
used to protect systems against the negative effects of
wind-up is to turn the integrator off whenever the input
reaches a limit.  This can either be done by a switch or
by implementing the integrator in such a way that it
automatically turns off when the input reaches a limit.
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As a simple illustration, consider the loop given in
the figure below:

We see that positive feedback using a stable transfer
function                     has been used to obtain integral
action.

Limiter
e(t) u(t)

p1

+
+

p0

p1(p1s + p0)

Figure 8.9:  Feedback loop with limiter
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If we replace the limiter by a unity gain, then
elementary block diagram analysis shows that the
transfer function for e to u is

Thus we have a simple PI controller.   However, the
arrangement shown in Figure 8.9 is a useful way of
implementing a PI controller.  Specifically, when the
controller output is limited, the integrator is removed
since the positive feedback loop is open circuited.

U(s)
E(s)

=
p1s + p0

s
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As an illustration of what form the limiter in Figure
8.9 might take, we show a particular limiter in Figure
8.10 which when used in Figure 8.9 achieves anti-
windup for an input amplitude limit.

input

output

umin

umax

Figure 8.10:  Limiter to achieve saturation
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An alternative limiter that achieves both slew rate
and amplitude limits is shown below.

∆σmin umin

+ umax∆σmax−
u(t)

e−∆s

+
+û(t)

Figure 8.11:  Combined saturation and slew rate 
                      limit model
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We will discuss the above kind of anti-windup
protection in much greater detail in:

Chapter 11  (Dealing with Constraints)
                            and
Chapter 23 (Model Predictive Control).
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Remedies for Minimal Actuation
Movement

Minimal actuator movements are difficult to remedy.
In some applications, it is possible to use dual-range
controllers wherein a large actuator is used to
determine the majority of the control force but a
smaller actuator is used to give a fine-trim.

An example of this is given on the book’s web page
in relation to pH Control.

In other applications we must live with the existing
actuator.
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Continuous Caster Revisited
We recall the sustained oscillation problem due to actuator minimal
movements described in Example 8.2.

One cannot use dual-range control in this application because a small-high-
precision valve would immediately clog with solidified steel.  A solution
we have used to considerable effect in this application is to add a small
high frequency dither signal to the valve.   This keeps the valve in motion
and hence minimizes stiction effects. The high frequency input dither is
filtered out by the dynamics of the process and thus does not have a
significant impact on the final product quality.  Of course, one does pay the
price of having extra wear on the valve due to the presence of the dither
signal.  However, this cost is off-set by the very substantial improvements
in product quality as seen at the output.  Some real data is shown in Figure
8.12.
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Figure 8.12: Real data showing effect of adding
dither
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Further Real Data:
Top Trace - External Dither
Bottom Trace - Mould Level

(Note:  oscillation disappears once dither applied)
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Finally, we turn to the impact of the process itself.  We
have discussed these limitations under the headings of:

delays
open loop plant poles
open loop plant zeros

The limitations arising from these effects are
fundamental WITHIN THE GIVEN ARCHITECTURE !
This suggests that the one to overcome these limitations
is to consider changing the basic architecture of the
problem.
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Architectural Changes

The fundamental limits we have described apply to
the given set-up.  Clearly, if one changes the
physical system in some way then the situation
changes.  Indeed, these kinds of change are a very
powerful tool in the hands of the control system
designer.
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The above idea will actually be a central theme as we
move forward in these notes.  Indeed, we will give
many industrial examples of the power of
architectural changes.  For example, in Chapter 10
we will show how feedforward and cascade loops
can dramatically improve performance.  We will also
see how a simple architectural change can resolve
the fundamental problem of the hold-up effect in
Rolling Mills (see earlier in this chapter).
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Simple Illustration:
Effect of Two Degree of Freedom Architecture on
Closed Loop Response with PI Control
Consider the feedback control of plant with nominal model
G0(s) with a PI controller,  C(s), where

Then, the closed loop poles are at (-1; -1) and the controller
has a zero at s = -0.5. Equation (8.6.12) correctly predicts
overshoot for the one d.o.f. design. However, if we first
prefilter the reference by H(s) = 1/2s+1, then no overshoot
occurs in response to a unit step change in the reference
signal.  Figure 8.13 shows the plant output for the one d.o.f.
design; this is due to the fact that now the transfer function
from R(s) to E(s) = R(s) - Y(s) has only one zero at the
origin.

Go(s) =
1
s
; C(s) =

2s + 1
s
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Figure 8.13: Effects of two d.o.f. architecture
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Design Homogeneity Revisited
We have seen above that limitations arise from
different effects.  For example, the following factors
typically place an upper limit on the usable bandwidth

◆ Actuator slew rate and amplitude limits
◆ Model error
◆ Delays
◆ Right half plane or imaginary axis zeros

This leads to the obvious question:  which of these
limits, if any, do I need to consider?  The answer is
that it is clearly best to focus on that particular issue
which has the most impact.
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This is because the greatest return comes from
influencing the most significant factor.

Indeed, in an ideal situation, the final errors due to
various sources should all be comparable (otherwise
the possibility exists that one has over expended
effort in reducing one source of error when it wasn’t
dominant).  We call this design homogeneity.
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Summary
❖ This chapter has addressed design issues for SISO feedback loops

❖ It has been shown that the following closed loop properties
cannot be addressed independently by a (linear time invariant)
controller:

◆ speed of disturbance rejection
◆ sensitivity to measurement noise
◆ accumulated control error
◆ required control amplitude
◆ required control rate changes
◆ overshoot, if the system is open-loop unstable
◆ undershoot, if the system is non-minimum phase
◆ sensitivity to parametric modeling errors
◆ sensitivity to structural modeling errors
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❖ Rather, tuning for one of these properties automatically
impacts on the others.

❖ For example, irrespectively of how a controller is
synthesized and tuned, if the effect of the measurement
noise on the output is T0(s), then the impact of an output
disturbance is necessarily 1 - T0(s). Thus, any particular
frequency cannot be removed from both an output
disturbance and the measurement noise as one would
require T0(s) to be close to 0 at that frequency, whereas the
other would require T0(s) to be close to 1.  One can
therefore only reject one at the expense of the other, or
compromise.
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❖ Thus, a faster rejection of disturbances, is generally
associated with

◆ higher sensitivity to measurement noise
◆ less control error
◆ larger amplitude and slew rates in the control action
◆ higher sensitivity to structural modeling errors
◆ more undershoot, if the system is non-minimum phase
◆ less overshoot if the system is unstable.
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❖ The trade-offs are made precise by the following
fundamental laws of trade-off:
(1) S0(s) = 1 - T0(s)

that is, an output disturbance is rejected only at frequencies where
|T0(jw)| ≈ 1;

(2) Y(s) = -T0(s)Dm(s)
that is, measurement noise dm(t), is rejected only at frequencies
where  |T0(jw)| ≈ 0;

(3) Su0(s) = T0(s)[G(s)]-1

that is, large control signals arise at frequencies where |T0(jw)| ≈ 1
but |G0(jw)| << 1, which occurs when the closed loop is forced to
be much more responsive than the open loop process.
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(4) Su0(s) = S0(s)G0(s)
that is, open-loop poles of the process must necessarily either
appear as zeros in S0(s) (resulting in overshoot when rejecting
output step disturbances and additional sensitivity), or if they are
stable, the designer can choose to accept them as poles in Si0(s)
instead (where they impact on input-disturbance rejection).

(5) S(s) = S0(s)S∆(s) where S∆(s) = (1 + T0(s)G∆(s))-1

that is, being responsive to reference changes and against
disturbances at frequencies with significant modeling errors,
jeopardizes stability;  note that the relative (multiplicative)
modeling error G∆ usually accumulates phase and magnitude
towards higher frequencies.

(6) Forcing the closed loop faster than unstable zeros, necessarily
causes substantial undershoot.



Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 8

❖ Observing the fundamental laws of trade-off ensures that
inadvertently specified, but unachievable specifications
can quickly be identified without wasted tuning effort.

❖ They also suggest where additional effort is profitable or
wasted:

◆ if a design does not fully utilize the actuators and disturbance
rejection is poor due to modeling errors (i.e., the loop is
constrained by fundamental trade-off law (5), then additional
modeling efforts are warranted.

◆ If, on the other hand, loop performance is constrained by non-
minimum phase zeros and a constraint on undershoot (i.e., the loop
is constrained by fundamental trade-off law (6), then larger
actuators or better models would be wasted.
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❖ It is important to note that the design trade-offs
◆ are fundamental to linear time invariant control
◆ are independent of any particular control synthesis methods used.

❖ However, different synthesis methods
◆ choose different closed loop properties as their constructed

property,
◆ therefore rendering different properties as consequential.

❖ Some design constraints, such as the inverse response due
to NMP zeros, exist not only for linear control systems, but
also for any other control approach and architecture.
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❖ Remedies for the fundamental limits do exist but they
inevitably require radical changes, e.g.

◆ seeking alternative senses
◆ seeking alternative actuators
◆ modifying the basic architecture of the plant or controller.



Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 8

We have seen that:
◆ sensors are the eyes of control.  Consequently, if the sensors are poor

then good performance cannot be achieved.

◆ Actuators provide the muscles for control;  i.e. the motive force to
move from where the plant states are to where we want then to be.
Consequently if actuators are poor then good performance cannot be
achieved.

However, good eyes and strong muscles are not enough for high
performance control.  The reader is encouraged to think of
somebody they know who has good eyesight and who is strong but
who cannot play a competitive sport at A-grade level.  Of course,
the extra ingredient is hand-eye coordination, I.e. the connection
between sensors and actuators.
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This connection has many difficult aspects.   For example, if
one thinks about playing tennis well, then one realizes that it is
much more than hitting the ball hard.  One needs to

◆ predict where the ball will go;
◆ predict where the opponent will run;
◆ sometimes put spin or lob the ball.

These things take a long time to learn to do well, i.e. designing
a high performance feedback controller connecting sensors to
actuators is a non-trivial task.  This is the subject of this book.
We remind the reader of the following slide (from Chapter 1)
which captures the above ideas in cartoon form:
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� Better Control
Provides more finesse by combining sensors and 
actuators in more intelligent ways

� Better Actuators
Provide more Muscle

�  Better Sensors
Provide better Vision


