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Limitations
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The purpose of this chapter is to develop frequency
domain constraints and to explore their interpretations.
The results to be presented here have a long and rich
history beginning with the seminal work of Bode
published in his 1945 book on network synthesis.  The
results give an alternative view of the fundamental time
domain limitations presented in Chapter 8.
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H. Bode, Network  Analysis and Feedback Amplifier  Design,
Van Nostrand, 1945.  (Work done 1938, 1939).  (Based on
course at Bell Telephone Laboratories on Feedback Amplifier
Design for Long Distance Telephone systems.)

Typical results:

(1) For Stable Min. phase Transfer Functions gain can be
      computed from phase and vice versa, e.g.

duu
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(2) Log sensitivity trade-off (sometimes called Water bed effect)
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Some History
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For historical interest we include (as the next few
slides) the first few pages of the book written by
Bode
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Theme

In Advanced Control, understanding what can and
cannot be done (and why) is often more important
than producing a specific design.
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The constraints presented here mirror constraints that
apply in many other areas, e.g.

◆ Second Law of Thermodynamics
◆ Cramer Rao Inequality of Estimation
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Design Constraints in Engineering

(a)  It can rule out silly ideas:
For example, consider the following Perpetual Motion Machine?

Generator

(Ruled out by fundamental principle of conservation of energy)

   Fan

  Motor

Turbine

Examples:  First and Second Laws of 
Thermodynamics
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(b) They can also quickly identify fundamentally
      hard problems:
For example, if faced with the following problem:
“Design a coal-fired generating plant with 80%
efficiency”
This can be shown to be impractical using
fundamental laws, e.g., using 80% efficiency and
ideas of entropy we see that the required temperature
is unrealistic, e.g.
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Examples from other fields
❖ Estimation

◆  Cramer Rao inequality

❖ Communications
◆ Probability of error can be made arbitrarily small

provided

( ){ }
12

2 );(logˆ
−

�
�

�

�

�
�

�

�

�
�
	



�
�

∂
∂≥−

θ
θθθ ypEE

CR ≤

sec/bits1log2 �
�

�
�
�

� +=
N
SBC



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

One of the best known results is that for a stable
minimum phase system, the phase is uniquely
determined by the magnitude and vice versa.  The
exact formula is given on the next slide.
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Weighting Function

�
∞
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= 2cothlog|)(|log1)( 0
0

u
du

ejHd uω
πωφ

Thus, the slope of the magnitude curve in the vicinity of
ω0, say c, determines the phase φ(ω0): 
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Here we study the fundamental design constraints
that apply to feedback systems of the type illustrated
below

The constraints we develop apply to frequency
domain integrals of the sensitivity function and
complementary sensitivity function.

C G+
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Conceptual Background

Before delving into technical details, we first review
the conceptual nature of the results to be presented.

The simplest (and perhaps best known) result is that,
for an open loop stable plant, the integral of the
logarithm of the closed loop sensitivity is zero;  i.e.

Now we know that the logarithm function has the
property that it is negative if  |S0| < 1  and it is
positive if  |S0| > 1.

�
∞ =0 0 0|)(|ln dwjwS
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Graphical interpretation of the
area formula

Typical Nyquist plot for a stable rational transfer
function,  L,  of relative degree two:

Note that  S(jω)-1 = 1 + L(jω)  is the vector from the -1
point to the point on the Nyquist plot corresponding to
the frequency ω.
It is clear from the plot that frequencies where |S(jw)| < 1
are balanced by frequencies where |S(jw)| > 1.
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The above result implies that set of frequencies over
which sensitivity reduction occurs (i.e. where  |S0| <
1) must be matched by a set of frequencies over
which sensitivity magnification occurs (i.e. where
|S0| > 1).

This has been given a nice (cartoon like)
interpretation as thinking of sensitivity as a pile of
dirt.  If we remove dirt from one set of frequencies,
then it piles up at other frequencies.  This is
conceptually illustrated on the next slide.
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Sensitivity
dirt

1

Slog

w

Physical Interpretation
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We will show in the sequel that the above sensitivity
trade-off is actually made more difficult if there are
either (or both)

◆ Right half plane open loop zeros
◆ Right half plane open loop poles

Notice that these results hold irrespective of how the
control system is designed; i.e. they are fundamental
constraints that apply to all feedback solutions.
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Indeed, it will turn out that to avoid large frequency
domain sensitivity peaks it is necessary to limit the
range of sensitivity reduction to be:

(i) less than any right half plane open loop zero
(ii) greater than any right half plane open loop pole.
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This begs the question - “What happens if there is a
right half plane open loop zero having smaller
magnitude than a right half plan open loop pole?”
Clearly the requirements specified on the previous
slide are then mutually incompatible.  The
consequence is that large sensitivity peaks are
unavoidable and, as a result, poor feedback
performance is inevitable.
An example precisely illustrating this conclusion
will be presented later.
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We begin with Bode’s integral constraint on
sensitivity.  This is a formal statement of the result
discussed above at a conceptual level;  namely

�
∞ =0 0 0|)(|ln dwjwS
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Bode’s Integral Constraints on
Sensitivity
Consider a one d.o.f. stable control loop with open
loop transfer function

where  H0l(s) is a rational transfer function of
relative degree  nr > 0 and define

Assume that H0l(s) has no open loop poles in the
open RHP.  Then the nominal sensitivity function
satisfies:

Go(s)C(s) = e−sτHol(s) τ ≥ 0

κ
�
= lim

s→∞ sHol(s)

∫ ∞

0

ln |So(jω)|dω =
{

0 for τ > 0
−κπ

2 for τ = 0
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Graphically, the above statement can be appreciated
in Figure 9.1

In Figure 9.1, the area A1 (� |S0(jw)| < 1) must be
equal to the area A2 (� |S0(jw)| > 1), to ensure that
the integral in equation (9.2.3) is equal to zero.
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Figure 9.1:
Graphical
interpretation
of the Bode integral
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Proof

We will not give a formal proof of this result.
Suffice to say it is an elementary consequence of the
well known Cauchy integral theorem of complex
variable theory - see the book for details.
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The extension to open loop unstable systems is as
follows:
Consider a feedback control look with open loop transfer
function as in Lemma 9.1, and having unstable poles
located at p1, …, pN, pure time delay τ, and relative
degree  nr ≥ 1.  Then, the nominal sensitivity satisfies:

where  κ = lims→∞ sH0l(s)

∫ ∞

0

ln |So(jω)| dω = π

N∑
i=1

R{pi} for nr > 1

∫ ∞

0

ln |So(jω)| dω = −κ
π

2
+ π

N∑
i=1

R{pi} for nr = 1
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Observations

We see from the above results that with open loop
RHP poles, the integral of log sensitivity is required
to be greater than zero (previously) it had to be zero.
This makes sensitivity minimization more difficult.
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Design Interpretations
Several factors such as undermodeling, sensor noise,
plant bandwidth, etc., lead to the need of setting a limit
on the bandwidth of the closed loop.  Typically

where  δ < 1/2 and k > 0.
Corollary:  Suppose that  L  is a rational function of
relative degree two or more and satisfying the bandwidth
restriction. Then

,,)(
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The above result shows that the area of the tail of the
Bode sensitivity integral over the infinite frequency
range [ωc, ∞) is limited.
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Implication:  Peak in the sensitivity frequency response
before ωc.
Suppose  S  satisfies the reduction spec.

and translating

on the shape of  |S(jw)| yields

,,1)( 1 cjS ωωωαω <≤∀<≤

c

k
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Now, using the bounds (2) and (1) in the Bode sensitivity
integral, it is easy to show that

Then, the larger the area of sensitivity reduction (i.e., α
small and/or  ω1  close to ωc )  will necessarily result in a
large peak in the range(ω1, ωc).
Hence, the Bode sensitivity integral imposes a design
trade-off when natural bandwidth constraints are assumed
for the closed-loop system.

( )
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Example
The inequality

can be used to derive a lower bound on the closed-loop
bandwidth in terms of the sum of open-loop unstable
poles.  Let
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Imposing the condition that the RHS above be
yields the following lower bound on the bandwidth,
which we take as

where

( ) �
∈

≥
szp

mb pSB ,ω

( ) ( )( ).
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π
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m

m ++−
=
∆



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

The factor  B(Sm) is plotted in the figure below as a
function of the desired peak sensitivity Sm,  for

δ = 0.45, k = 1, k1 = 0.7  and    α = 0.5.

�
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For example, an open-loop unstable system having
relative degree two requires a bandwidth of at least 6.5
times the sum of its ORHP poles if it is desired that  S
be smaller than 1/2 over 70% of the closed-loop
bandwidth while keeping the lower bound on the peak
sensitivity smaller than  Sm = √2 .
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We next turn to dual results that hold for
complementary sensitivity reduction.
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Integral Constraints on
Complementary Sensitivity

Consider a one d.o.f. stable control loop with open
loop transfer function

where  H0l(s) is a rational transfer function of
relative degree  nr > 1 satisfying

Furthermore, assume that H0l(s) has no open loop
zeros in the open RHP.

Go(s)C(s) = e−sτHol(s) τ ≥ 0

Hol(0)−1 = 0
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Then the nominal complementary sensitivity
function satisfies:

where  kv  is the velocity constant of the open loop
transfer function satisfying:

∫ ∞

0−

1
ω2

ln |To(jω)|dω = πτ
vk2

π−

)(
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As for sensitivity reduction, the trade-off described
above becomes harder in the presence of open loop
RHP singularities.  For the case of complementary
sensitivity reduction, it is the open loop RHP zeros
that influence the result.  The formal result is stated
on the next slide.
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Assume that H0l(s) has open loop zeros in the open
RHP, located at c1, c2, …, cM, then

��
=

∞ −+=
M

i vi kcdwjwT
w 1

00 2 2
1|)(|ln1 πππτ
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We next turn to a set of frequency domain integrals
which are closely related to the Bode type integrals
presented above but which allow us to consider RHP
open loop poles and zeros simultaneously.  These
integrals are usually called Poisson type integral
constraints.
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Poisson Integral Constraint on
Sensitivity

A trick we will use here is to express a complex
function  f(s) as the product of functions which are
non-minimum phase and analytic in the RHP, times
the following Blaschke products (or times the
inverses of these products).

We use the above idea to prove the results presented
below.

Bz(s) =
M∏

k=1

s − ck

s + c∗k
Bp(s) =

N∏
i=1

s − pi

s + p∗i
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Poisson Integral for S0(jw)

Consider a feedback control loop with open loop
RHP zeros located at c1, c2, …, cM, where  ck = γk +
jδk and open loop unstable poles located at p1, p2, ..,
pN.  Then the nominal sensitivity satisfies

To illustrate this formula, consider the requirement
that the sensitivity be reduced to below  ε  for all
frequencies up to wl.  (See the next slide).

∫ ∞

−∞
ln |So(jω)| γk

γ2
k + (δk − ω)2

dω = −π ln |Bp(ck)| for k = 1, 2, . . .M
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Figure 9.2:  Design specification for  |S0(jw)|
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In the sequel we will need to use the integral of the
term

and we define

and
2

∫ ω2

ω1

W (ck, ω)dω = Ω(ck, ω2) − Ω(ck, ω1)

∫ ∞

−∞
W (ck, ω)dω = π

Ω(ck, ωc) = 2 arctan
(

ωc

γk

)

Ω(ck,∞) = 2 lim
ωc→∞ arctan

(
ωc

γk

)
= π

W (ck, ω)
�
=

γk

γ2
k + (δk − ω)2

(*)
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Discussion
(i) Consider the plot of sensitivity versus frequency

shown on the previous slide.  Say we were to require
the closed loop bandwidth to be greater than the
magnitude of a right half plane (real) zero.  In terms
of the notation used in the figure, this would imply  wl
> γk.  We can then show using the Poisson formula
that there is necessarily a very large sensitivity peak
occurring beyond  wl.  To estimate this peak, assume
that wl = 2γk  and take � in Figure 6.2 as 0.3.  Then,
without considering the effect of any possible open
loop unstable pole, the sensitivity peak will be
bounded below as follows:
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lnSmax >
1

π − Ω(ck, 2ck)
[|(ln 0.3)Ω(ck, 2ck)|]

Then, using equation (*) we have that 
Ω(ck, 2ck) = 2 arctan(2) = 2.21, leading to Smax > 17.7.  
That is we have a VERY large sensitivity peak. Note that 
this in turn implies that the complementary sensitivity 
peak will be bounded below by Smax - 1 = 16.7.  
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(ii) The observation in (i) is consistent with the
analysis carried out in Chapter 8.  In both cases
the conclusion is that the closed loop bandwidth
should not exceed the magnitude of the smallest
RHP open loop zero.  The penalty for not
following this guideline is that a very large
sensitivity peak will occur, leading to fragile
loops (non robust) and large undershoots and
overshoots.
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(iii) In the presence of unstable open loop poles, the
problem is compounded through the presence of
the factor  |ln|Bp(ck)||.  This factor grows without
bound when one RHP zero approaches an
unstable open loop pole.
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Constraints on both |S0| and |T0|

Actually constraints can be imposed on both |S0|  and
|T0|.  For example, say that we require

|S0(jw)| < ε     for     w < wl

|T0(jw)| < ε     for     w > wh

This is illustrated on the next slide.



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

Figure 9.3: Design specifications for |S0(jw)| and 
|T0(jw)|
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lnSmax >
1

Ω(ck, ωh) − Ω(ck, ωl)
[|π ln |Bp(ck)|| + |(ln ε)Ω(ck, ωl)|

− (π − Ω(ck, ωh)) ln(1 + ε)]

We can then use the Poisson sensitivity integral to
bound the peak sensitivity.  The result is:
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We next turn to the dual Poisson integral constraints
that hold for the complementary sensitivity function.
The formal result is stated on the next slide.
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Poisson Integral Constraint on
Complementary Sensitivity

Poisson integral for  T0(jw).  Consider a feedback
control loop with delay  τ ≥ 0, and having open loop
unstable poles located at p1, p2, …, pN, where  pi = αi
+ jβi and open loop zeros in the open RHP, located at
c1, c2, …, cM.  Then,∫ ∞

−∞
ln |To(jω)| αi

α2
i + (βi − ω)2

dω = −π ln |Bz(pi)| + ταi for i = 1, 2, . . .N
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Say that we require that |T0| < ε  for w > wh.  Then it
follows from the above result that the peak value of
the complementary sensitivity will be bounded from
below as follows:

lnTmax >
1

Ω(αi, ωh)
[π| ln |Bz(αi)|| + ταi + | ln ε|(π − Ω(αi, ωh)]
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Discussion
(i) We see that the lower bound on the complementary

sensitivity peak is larger for systems with pure
delays, and the influence of a delay increases for
unstable poles which are far away from the
imaginary axis, i.e. large αi.

(ii) The peak, Tmax, grows unbounded when a RHP zero
approaches an unstable pole, since then |ln|Bz(pi)||
grows unbounded.



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

(iii) Say that we ask that the closed loop bandwidth be
much smaller than the magnitude of a right half plane
(real) pole.  In terms of the notation used above, we
would then have  wh << αi.  Under these conditions,
Ω(pi, wh) will be very small, leading to a very large
complementary sensitivity peak.  This is an
unacceptable result.  Thus we conclude that the
closed loop bandwidth should be greater than any
RHP open loop poles.
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We note that this is consistent with the results based
on time domain analysis presented in Chapter 8.
There it was shown that, when the closed loop
bandwidth is not greater than an open loop RHP
pole, large time domain overshoot will occur.
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Example of Design Trade-offs

We will illustrate the application of the above ideas
by considering the inverted pendulum problem.

Such systems exist in many universities and are used
to illustrate control principles.  The key idea is to
balance a rod on top of a moving cart (similar to
balancing a broom on one’s hand).  A photograph of
a real inverted pendulum system (at the University of
Newcastle) is shown on the next slide.
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Example of an Inverted Pendulum
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We will consider the following control problem:

Sensors:
We measure the position of the cart (but NOT the
angle of the pendulum)

Actuators:
We can apply forces to the cart.

Goal:
We want to position the cart at some location plus
have the pendulum balancing vertically.
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Inverted pendulum without angle
measurement

A schematic diagram of the system is shown below:

y(t)

M

m

l

f(t)

θ(t)

Figure 9.4:  Inverted pendulum
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Y (s)
F (s)

= 2
(s −√

10)(s +
√

10)
s2(s −√

20)(s +
√

20)

The model for this system was discussed in Chapter
3.  A linearized model for the system has the
following transfer function linking the cart position
(Y) to the force applied to the cart (F).
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We note that this system has
◆ an open loop RHP zero at  √10
◆ an open loop RHP pole at  √20

We observe that the RHP pole has greater magnitude
than the RHP zero.  The reader is reminded of the
comments made in the following two slides which
appeared in the earlier part of this chapter.
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Indeed, it will turn out that to avoid large frequency
domain sensitivity peaks it is necessary to limit the
range of sensitivity reduction to be:

(i) less than any right half plane open loop zero
(ii) greater than any right half plane open loop pole.
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This begs the question - “What happens if there is a
right half plane open loop zero having smaller
magnitude than a right half plan open loop pole?”
Clearly the requirements specified on the previous
slide are then mutually incompatible.  The
consequence is that large sensitivity peaks are
unavoidable and, as a result, poor feedback
performance is inevitable.
An example precisely illustrating this conclusion
will be presented later.
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We will show formally using the Poisson integral
formulae that the predictions made above are indeed
true for this example.
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We consider various choices for  wl and wh  with � = 0.1
❖ wl = �10 and wh = 100.  Then the equation for Smax predicts

that  Smax ≥ 432.  In this case, wh is much larger than the
unstable pole, thus the large value for the bound results from
wl = �10  being too close to the NMP zero.

❖ When wl = 1 and wh = 100, we have that Smax ≥ 16.7, which is
significantly lower than the previous case (although still very
large), since now, wl is much smaller than the NMP zero.

❖ If wl = 1, and wh = �20  we obtain that Tmax ≥ 3171, which is
due to the fact that wh is too close to the unstable pole.
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❖   If wl = 1, and wh = 3  we obtain that Tmax ≥ 7.2 × 105.  This
    huge lower bound originates from two facts:  firstly  wh  is
    lower than the unstable pole, and secondly,  wl and wh are very
    close.

We thus see that, no matter how we try to allocate  wl  and  wh,
large sensitivity peaks occur.  Thus this system seems to be
extremely difficult to control.
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The above conclusion is not unreasonable.  (The
reader should try balancing a broom on one’s hand
with one’s eyes shut!)

The key point is that the angle of the pendulum is not
measured.

In a later chapter we will see that a simple change in
the architecture made possible by providing a
measurement of the angle turns this near impossible
control problem into a very easy one (see also the
discussion on the web site).
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To illustrate just how hard this problem is, (when the
angle is not measured) we designed a stabilizing
controller as shown on the next slide.
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Where
p0 = -74.3
p1 = -472.8
p2 = 7213.0
p3 = 1690.5
�0 = -8278.9
�1 = -2682.3
�2 = 41.5

C(s) =
p3s

3 + p2s
2 + p1s + po

ss + &2s2 + &1s + &o
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Using the Poisson integrals, we predict

Smax ≥ 6.34
Tmax ≥ 7.19

The actual sensitivity plots are shown on the next
page.  These show that these lower bounds are
indeed exceeded by the specified controller
presented on the previous slide.
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Figure 9.5: Sensitivities for the inverted pendulum
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Summary
❖ One class of design constraints are those which hold at a

particular frequency.

❖ Thus we can view the law S(jw) = 1 - T(jw) on a frequency
by frequency basis.  It states that no single frequency can
be removed from both the sensitivity, S(jw), and
complementary sensitivity, T(jw).

❖ There is, however, an additional class of design
considerations, which results from so called frequency
domain integral constraints, see Table 9.1.
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Table 9.1

Notation Constraints Interpretation
pi RHP poles Z ∞

0

ln|So(jω)|dω = π

NX

i=1

�{pi}
Areas of sensitivity below 1 (i.e.
ln|So| < 0) must be matched by
areas of sensitivity above 1.

ci RHP zeros

Z ∞

0

ln|To(jω)|
ω2

dω = π
NX

i=0

1

ci
− π

2kυ

Areas of complementary sensi-
tivity below 1 must be matched
by areas of complementary sen-
sitivity above 1.

W (ck, ω) weighting func-
tion
Bp(ck) Blaschke product 2

Z ∞

0

ln|So(jω)|W (ck, ω)dω = −πln|Bp(ck)|

The above sensitivity trade-off
is focused on areas near RHP
zeros.

W (pi, ω) weighting func-
tion
Bz(pi) Blaschke product 2

Z ∞

0

ln|To(jω)|W (pi, ω)dω = −πln|Bz(pi)|

The above complementary sen-
sitivity trade-off is focused on
areas near RHP poles.
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❖ This chapter explores the origin and nature of these integral
constraints and derives their implications for control system
performance:

◆ The constraints are a direct consequence of the requirement that all
sensitivity functions must be stable;

◆ mathematically, this means that the sensitivities are required to be
analytic in the right half complex plane;

◆ results from analytic function theory then show, that this requirement
necessarily implies weighted integrals of the frequency response
necessarily evaluate to a constant;

◆ hence, if one designs a controller to have low sensitivity in a particular
frequency range, then the sensitivity will necessarily increase at other
frequencies-a consequence of the weighted integral always being a
constant;  this phenomenon has also been called the water bed effect
(pushing down on the water bed in one area, raises it somewhere else).
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❖ These trade-offs show that systems become increasingly
difficult to control as

◆ Unstable zeros become slower

◆ Unstable poles become faster

◆ Time delays get bigger.


