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The purpose of this chapter isto develop frequency
domain constraints and to explore their interpretations.
The results to be presented here have along and rich
history beginning with the seminal work of Bode
published in his 1945 book on network synthesis. The
results give an alternative view of the fundamental time
domain limitations presented in Chapter 8.
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Some History

H. Bode, Network Analysis and Feedback Amplifier Design,

Van Nostrand, 1945. (Work done 1938, 1939). (Based on
course at Bell Telephone Laboratories on Feedback Amplifier
Design for Long Distance Telephone systems.)

Typical results:

(1) For Sable Min. phase Transfer Functions gain can be
computed from phase and vice versa, e.g.

= u
¢=1 [%logcothdu

(2) Log sensitivity trade-off (sometimes called Water bed effect)
[logSdw=0
0
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For historical interest we include (as the next few
slides) the first few pages of the book written by
Bode
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PREFACE

This book was originally written as an informal mimeographed text for
one of the so-called “ Out-of Hour ” courses at Bell Telephone Labora-
tories. The bulk of the material was prepared in 1938 and 1939 and was
given in course form to my colleagues there in the winters of 1939—40
and 1940-41. During the war, however, the text has also been supplied
as a reference work to a considerable number of other laboratories en-
gaged in war research. The demand for the text on this basis was un-
expectedly heavy and quickly exhausted the original supply of mimeo-
graphed copies. It has consequently been decided to make the text
more widely available through regular channels of publication.

In revising the material for publication, the original theoretical dis-
cussion has been supplemented by footnote references to other books and
papers appearing both before and after the text was first written. In
addition, an effort has been made to simplify the theoretical treatment
in Chapter IV, and minor editorial changes have been made at a number
of points elsewhere. Otherwise, however, the text is as it was originally
written.

The book was first planned as a text exclusively on the design of feed-
back amplifiers. It shortly became apparent, however, that an extensive
preliminary development of electrical network theory would be necessary
before the feedback problem could be discussed satisfactorily. With the
addition of other logically related chapters, this has made the book pri-
marily a treatise on general network theory. The feedback problem is
still conspicuous, but the book also contairs material on the design of
non-feedback as well as feedback amplifiers, particularly those of wide
band type, and on miscellaneous transmission problems arising in wide
band systems generally, Much of this is material which has not hitherto
appeared in previous texts on network theory. On the other hand, trans-
mission line and filter theory, which are the primary concerns of most
earlier network texts, are omitted.

Two further explanatory remarks may be helpful in understanding the
book. The first is the fact that, although the feedback amplifiers en-
visaged in most of the discussion are of the conventional single loop,
absolutely stable type, the original plan for the text called for two final
chapters on design methods appropriate for multiple loop and condition-
ally stable circuits. Invincible fatigue set in before these chapters could

iii
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the pole at the origin, Then evidently the total ecentral angle subtended
by all four sides would be zero, so that the loop integral would vanish.

An example of a different sort is furnished by one of the classical theorems
in the calculus of residues. Let g(z) be a function which is analytic on and
within a given closed contour and let ¢ be any point within the contour.
Then g(z)/(z — ¢) is a function which is analytic in the same region except
for a simple pole atz = g. The residue at this pole must be g{g), the value
assumed by g when z = g, as we can easily see by expanding g(z) near this
pointin the Taylor’s series g(g) + 2" (9) 2 — ¢) + (1/20)g" (g) (z — @)% ++ -,
and noticing that after division by z — ¢ the series takes the same 'form
as that given for f(z) in (8-8). If we identify g(z)/(z — ¢) with f(z),
therefore, (8-9) allows us to write

£ orige) (8-13)
zZ = q

where, as before, the integration is taken in a clockwisc direction.

This theorem is of interest here because of its bearing on the general
problem of relating the values assumed by an analytic function within a
given region to its values on the boundary of the region, which was dis-

cussed earlier in the chapter. Evidently, if we know g(z) we can perform
the integration on the left-hand side of (8-13) and calculate the special
value g(¢) directly. In order to make this possible, however, we need know
£(z) only on the path of integration, that is, only on the boundary. Equa-
tion (8-13) thus provides a method of determining an analytic function
anywhere inside a given region from a knowledge of its behavior only on the
boundary of the region. The problem with which we are actually con-
cerned is that of determining what properties a function must have on the
boundary of the region when it is known to have certain properties in the
interior. This problem is evidently in many respects the converse of that
solved by (8-13), although it is much more general, since we begin with a
specification only of the general properties of the function rather than with
a knowledge of its behavior in detail. On this account it is not possible to
present an adequate answer in terms of a single compact formula such as
(8-13). The range of questions of practical interest requires the develop-
ment of a considerable variety of formulae, only a few of which are given
in the present chapter. Except for these qualifications, however, the solu-
tion of the converse problem will be found to imply relations between the
values of a function on the boundary of a region and in its interior as
tightly knit as that given by (8-13).

8.6. Inmtegral of the Logarithmic Derivative
For the immediate purposes of the present chapter, the preceding dis-
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abruptly to zero, the feedback available over a definite 12.5 or 25 me band is
slightly less than these figures would indicate.*

13.6. Regeneration and Degeneration in a General Feedback Circust

The analysis just concluded can also be used to derive a second result
which is at least curious, although it may not be of great practical impor-
tance. We are accustomed to thinking of feedback amplifiers as being either
regenerative, in which case the external gain is increased at the cost of an
increase in the effects of tube variations, or degenerative, in which case the
gain is reduced in exchange for a corresponding improvement in the effects
of tube variations. It is apparent, however, that the expression
log (1 + G.Z), which we have just studied, is merely a particularly simple
form to which the general expression log (I — p8) reduces for the special
case of a single tube feedback amplifier. Equation (13-15) therefore
measures the total reduction in gain or degeneration for such a system. In
a similar fashion we might replace the 6 in (13-13) by log (1 — u8) for a
general amplifier and proceed with the analysis in the same way as before.

In the general case only one difference would appear. Whereas in the
single tube feedback amplifier the feedback wg@ varies, in general, inversely
as the first power of the frequency at high frequencies, in a general multitube

amplifier, the feedback would vanish as some higher power of frequency.
If the feedback drops off as a higher power than the first, however, the con-
tribution of the integral around the infinite semicircle is evidently zero and
the right-hand side of equation (13-15) therefore vanishes. ‘This can be
formulated as the

Theorem: In a single loop feedback amplifier of more than one stage
the averapge regeneration or degeneration over the complete
frequency spectrum is zcro.

In a typical amplifier, in other words, the increase in gain at high fre-
quencies due to the fact that | 1 — uB | is less than one just balances the

* This example is taken from the design of a repeater amplifier used some years
ago in an experimental system for long distance broad-band transmission over coaxial
lines. The system was intended to transmit carrier telephone messages aver a 2 mc
band; a modified form of the system with a somewhat extended band to accommeodate
television as well as telephone signals is described by Strieby and Wentz, “Television
Transmission over Wire Lines,” B.5.7 /., Jau., 1941. The 40 uyf cathode-ground
capacity mentioned in the text is much greater than the physical capacity in the
actual amplifier, but the grid-cathode and plate-cathode capacitics lead to an efective
C of about this magnitude. The reason for maintaining the local feedback over a
band as great as 12 to 25 mc is that otherwise the stability of the system is jeopardized
by a decrease in the gain of the tube to which the local feedback is applied, even if the
characteristics around the main loop are apparently absolutely stable. ‘The design is
described in more detail in a later chapter.
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Theme

In Advanced Control, understanding what can and
cannot be done (and why) is often more important
than producing a specific design.
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The constraints presented here mirror constraints that
apply in many other areas, e.g.

1 Second Law of Thermodynamics
5 Cramer Rao Inequality of Estimation
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Design Constraints in Engineering

Examples. First and Second Laws of
Thermodynamics

(@) It canruleout silly ideas:

For example, consider the following Perpetual Motion Machine?

Turbine

Fan
— Generator
Motor —
—>
<_

(Ruled out by fundamental principle of conservation of energy)
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(b) They can also quickly identify fundamentally

hard problems:
For example, If faced with the following problem:

“Design a coal-fired generating plant with 80%
efficiency”

This can be shown to be impractical using
fundamental laws, e.g., using 80% efficiency and
Ideas of entropy we see that the required temperature
IS unrealistic, e.g.

11258006 =T >5xT, = T >1227°C!
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Examples from other fields

0 Estimation
n  Cramer Rao inequality

E{(é . 9)2} > (E{a 'Ogape(y; «9)}2J_1

0 Communications

o Probability of error can be made arbitrarily small
provided

R<C

C= Blogz(1+§)bits/sec
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One of the best known resultsisthat for a stable
minimum phase system, the phase is uniquely
determined by the magnitude and viceversa. The
exact formulais given on the next slide.
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Welghting Function

_ 1 dlog|H(jare) | H
Gap) = [ & logcoth

log (coth lu/2l)

Thus, the slope of the magnitude curve in the vicinity of
w,, Say ¢, determines the phase @(w,):

He)=C [ Iogcoth‘%‘du ==
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Here we study the fundamental design constraints
that apply to feedback systems of the type illustrated

below
—+<‘>—> C — G >

The constraints we develop apply to frequency
domain integrals of the sensitivity function and
complementary sensitivity function.
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Conceptual Background

Before delving into technical details, we first review
the conceptual nature of the results to be presented.

The smplest (and perhaps best known) result is that,
for an open loop stable plant, the integral of the
logarithm of the closed loop sensitivity is zero; i.e.

[ In|S(jw) [dw=0

Now we know that the logarithm function has the
property that it iIsnegativeif |S)|<1 anditis
positiveif |S)|> 1.
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Graphical interpretation of the
areaformula

Typical Nyquist plot for a stable rational transfer
function, L, of relative degree two:

A

Chapter 9

jw

ISGew)l > 1 \|IS(w)f < T

Notethat Sjaw)!=1+ L(jw) isthevector fromthe-1
point to the point on the Nyquist plot corresponding to
the frequency w.

It IS clear from the plot that frequencies where |S(jw)| < 1
are balanced by frequencies where [S(jw)| > 1.
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The above result implies that set of frequencies over
which sensitivity reduction occurs (i.e. where |§)| <
1) must be matched by a set of frequencies over
which sensitivity magnification occurs (i.e. where

[Sol > 1)

This has been given anice (cartoon like)
Interpretation as thinking of sensitivity as apile of
dirt. If weremove dirt from one set of frequencies,
then it piles up at other frequencies. Thisis
conceptually illustrated on the next dide.
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Physical Interpretation

|d§ A

—

Sensitivity
dirt
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We will show in the sequel that the above sensitivity
trade-off is actually made more difficult if there are
either (or both)

1 Right half plane open loop zeros
1 Right half plane open loop poles

Notice that these results hold irrespective of how the
control system isdesigned; I.e. they are fundamental
constraints that apply to all feedback solutions.
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Indeed, it will turn out that to avoid large frequency
domain sensitivity peaks it is necessary to limit the
range of sensitivity reduction to be:

(1) lessthan any right half plane open loop zero
(1) greater than any right half plane open loop pole.



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

This begs the question - “What happens if thereisa
right half plane open loop zero having smaller
magnitude than a right half plan open loop pole?”

Clearly the requirements specified on the previous
dlide are then mutually incompatible. The
consequence isthat large sensitivity peaks are
unavoldable and, as a result, poor feedback
performance is inevitable.

An example precisdy illustrating this conclusion
will be presented | ater.
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We begin with Bode' s integral constraint on
sensitivity. Thisisaformal statement of the result
discussed above at a conceptual level; namely

b InISo(jw) [dw=0
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Bode' s Integral Constraints on
Sengitivity
Consider aone d.o.f. stable control loop with open

loop transfer function
Go(5)C(s) = e °THy(s) T7>0

where Hg(s) iIsarational transfer function of
relative degree n, > 0 and define

k2 lim sHoi(s)

S— OO

Assume that H,(s) has no open loop polesin the
open RHP. Then the nominal sensitivity function
satisfies.

/ 1n|SO(jw)|dw:{ 0 for >0
0

—/ﬁ;% for =20
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Graphically, the above statement can be appreciated
In Figure 9.1

In Figure 9.1, thearea Al (= |S,(jw)| < 1) must be
equal tothearea A2 (= [S,(Jw)| > 1), to ensure that
the integral in equation (9.2.3) is equal to zero.

Sensitivity frequency response
/\ | Figure9.1:
- Graphical

oA | interpretation
‘ ‘ ‘ ‘ | | of the Bode integral

0 2 4 6 8 10 12

N o N N
T

In|S_(jw)l
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Proof

We will not give aformal proof of this result.
Suffice to say It Is an elementary conseguence of the
well known Cauchy integral theorem of complex
variable theory - see the book for details.
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The extension to open loop unstable systemsis as
follows:

Consider a feedback control look with open loop transfer
function asin Lemma 9.1, and having unstable poles
located &t p,, ..., Py, PUretimedelay 7, and relative
degree n. = 1. Then, the nominal sensitivity satisfies:

50 N
/ In |S,(jw)| dw = WZR{pi} for n,>1
0

1=1

o0 N
/ n|S,(jw)|dw = k= + 73 R{p}  for n, =1
0 2 i=1

where k=1lim,_ . SHy(S)
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Observations

We see from the above results that with open loop
RHP poles, the integral of log sensitivity Is required
to be greater than zero (previoudly) it had to be zero.
This makes sensitivity minimization more difficult.



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

Design Interpretations

Several factors such as undermodeling, sensor noise,
plant bandwidth, etc., lead to the need of setting alimit
on the bandwidth of the closed loop. Typically

1+k
L(jw)sé(“a’gj | Dw= ay,
where 60 < 1/2and k > 0.

Corollary: Supposethat L isarationa function of

relative degree two or more and satisfying the bandwidth
restriction. Then

[} 10gS(jw)das 0
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The above result shows that the area of the tail of the
Bode sensitivity integral over the infinite frequency
range [ w,, ) Islimited.
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Implication: Peak in the sensitivity frequency response
before w..
Suppose S satisfies the reduction spec.

S(jw) sa<], O < @y < G,
and trandlating
o\
L(jw)s{cj , Ow= w,
w

on the shape of |jw)| yields

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Now, using the bounds (2) and (1) in the Bode sensitivity
Integral, It Is easy to show that

30
Ty ptawlo ;_Zﬁb .

pLizs

sup  logS(jw) =
e, )

1
W~ )
Then, the larger the area of sensitivity reduction (i.e., a
small and/or w, closeto c.) will necessarily result in a
large peak In the range(w,, w.).

Hence, the Bode sensitivity integral imposes a design
trade-off when natural bandwidth constraints are assumed
for the closed-loop system.
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Example

The inequality
: 30y
sup logS(jw)z-—=——|m ). p+a)llogl—.
e, ) @] poz a X

can be used to derive alower bound on the closed-loop
bandwidth in terms of the sum of open-loop unstable
poles. Let

= K.
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|mposing the condition that the RHS above be
yields the following lower bound on the bandwidth,
which we take as

&, 2 B(Sh) Db,

plize

where

A i
(1K )(Sy +1.50/k +k; loga)’

B(Si)
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wr2B(Sy) QP

pLZg

Thefactor B(S,) isplotted in the figure below as a
function of the desired peak sensitivity S, for

0=045k=1,k,=0.7 and a=0.5.
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For example, an open-loop unstable system having
relative degree two requires a bandwidth of at least 6.5
times the sum of its ORHP polesif it is desired that 1S9 ]
be smaller than 1/2 over 70% of the closed-loop
bandwidth while keeping the lower bound on the peak
sensitivity smaller than S . =v2.
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We next turn to dual results that hold for
complementary sensitivity reduction.
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Integral Constraints on
Complementary Sensitivity
Consider aone d.o.f. stable control loop with open
loop transfer function

G,(s)C(s) = e °THy(s) T >0

where Hg(s) isarational transfer function of
relative degree n. > 1 satisfying

H,(0)"'=0

Furthermore, assume that H,(s) has no open loop
zeros in the open RHP.
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Then the nominal complementary sensitivity
function satisfies:

/0 " In|T,(jw)|dw = 7T _ZLKV
where k, i1sthe velocity constant of the open loop
transfer function satisfying:

1 __imdT(s
k, l'% ds

=—lim -
s-0SHoI (S)




©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

As for sensitivity reduction, the trade-off described
above becomes harder in the presence of open loop
RHP singularities. For the case of complementary
sensitivity reduction, it isthe open loop RHP zeros
that influence the result. The formal result is stated
on the next dlide.
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Assume that H(s) has open loop zeros in the open
RHP, located at ¢, C,, ..., Cy, then

M
Lin|To(jw) |dw =7+ 7> L - T
b 2N To(iw| 257,
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We next turn to a set of frequency domain integrals
which are closely related to the Bode type integrals
presented above but which allow us to consider RHP
open loop poles and zeros ssimultaneously. These

Integrals are usually called Poisson type integral
constraints.
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Poisson Integral Constraint on
Sengitivity

A trick we will use here isto express a complex
function f(s) asthe product of functions which are
non-minimum phase and analytic in the RHP, times
the following Blaschke products (or times the

Inver ses of these products).
wal § — Cg B o al S — Di
1;[3‘|'Ck p<8)_11:[13+pz

We use the above idea to prove the results presented
below.
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Poisson Integral for §,(jw)

Consider a feedback control loop with open loop
RHP zeros located at ¢, C,, ..., Cy, Where ¢, = | +
] 9, and open loop unstable poles located at p4, p,, -,
On- Then the nominal sensitivity satisfies

~ : Tk
In |S, dw = —mln|B,(c for k=1,2,...M
[ ISy e = —winBy(er)

To illustrate this formula, consider the regquirement
that the sensitivity be reduced to below € for all
frequencies up to w,. (Seethe next slide).
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Figure 9.2: Design specification for |S,(jw)|

Sensitivity frequency response
T T T T |

2 e

15 1
EX]

Magnitude
(=Y
T

10" @ 10 10 10
Frequency [rad/s]

Notional closed loop bandwidth
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In the sequel we will need to use the integral of the
term wic,,w) é Vk

5k — w)2
and we define

/ W Cka

2 Wick,w)dw = Q(ck, w2) — Qck, w1)

Wi

Q(cy, we) = 2arctan (‘”—> (*)

Yk

and

Qck,00) =2 lim arctan <&> =T

We— 00 Vi
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Discussion

(1) Consider the plot of sensitivity versus frequency
shown on the previous slide. Say we were to require
the closed |oop bandwidth to be greater than the
magnitude of aright half plane (real) zero. Interms
of the notation used in the figure, this would imply w,
>Y,.. We can then show using the Poisson formula
that there Is necessarily avery large sensitivity peak
occurring beyond w,. To estimate this peak, assume
that w, = 2y, and take e in Figure 6.2 as 0.3. Then,
without considering the effect of any possible open
loop unstable pole, the sensitivity peak will be
bounded below as follows:
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1

InS,, .. In0.3)2(cs, 2
1 Smaz > s [1(1n0.3)0(cx, 261

Then, using equation (*) we have that

¢, 2¢,) = 2arctan(2) = 2.21, leading to S, > 17.7.
That iswe have aVERY large sensitivity peak. Note that
thisin turn implies that the complementary sensitivity
peak will be bounded below by S, - 1=16.7.
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(1) Theobservationin (i) is consistent with the
analysis carried out in Chapter 8. In both cases
the conclusion is that the closed loop bandwidth
should not exceed the magnitude of the smallest
RHP open loop zero. The penalty for not
following this guideline isthat avery large
sensitivity peak will occur, leading to fragile
loops (non robust) and large undershoots and
overshoots.
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(111) In the presence of unstable open loop poles, the
problem is compounded through the presence of
thefactor [In[By(cy)||. Thistactor grows without
bound when one RHP zero approaches an
unstable open loop pole.
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Constraints on both |S,| and [T,

Actually constraints can be imposed on both || and
ITol- For example, say that we require

IS(w)|<e for w<w,
ITow)|<e for w>w,

Thisisillustrated on the next slide.
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Figure 9.3: Design specifications for |S,(jw)| and
[ ToUW)]

Sensitivities frequency responses
. — —

2 . ——

151
IT G 1S,

Magnitudes
=

0.5

P
1

107" W 10 w 10 10
Frequency [rad/s]
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We can then use the Poisson sensitivity integral to
bound the peak senditivity. Theresult Is:

1
Q(ck,wh) — Q(ck,wl)
— (m— Q(ck,wp)) In(1 + €)]

InS,,q0 >

[l In | By (ci)] + |(In.€)$2(ck, wi))
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We next turn to the dual Poisson integral constraints
that hold for the complementary sensitivity function.
The formal result is stated on the next dlide.
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Poisson Integral Constraint on
Complementary Sensitivity

Poisson integral for T,(jw). Consider afeedback
control loop with delay 7= 0, and having open loop
unstable poles located at p, P, --., Py, Where p, = a,
+ | B and open loop zeros in the open RHP, located at

Cy; Cy, ..., Cy. Then,

[ i)

Q;
OéZ-Q + (62 - (U)

sdw = —7ln |B,(p;)| + Ty for 1=1,2,...N
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Say that werequirethat |T,| <& for w>w,. Thenit
follows from the above result that the peak value of
the complementary sensitivity will be bounded from

below as follows:

1

s, on) 7| In | B, (a;)|| + 7o + [ Ine|(m — Q(cv, wp)]

InT,,0c >
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Discussion

(1) We seethat the lower bound on the complementary
sensitivity peak islarger for systems with pure
delays, and the influence of adelay increases for
unstable poles which are far away from the
Imaginary axis, i.e. large a;

(1) The pesk, T, grows unbounded when a RHP zero

approaches an unstable pole, since then |In|B(p)||
grows unbounded.
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(111) Say that we ask that the closed |oop bandwidth be
much smaller than the magnitude of aright half plane
(real) pole. Interms of the notation used above, we
would then have w, << a;. Under these conditions,
Q(p;, W) will be very small, leading to avery large
complementary sensitivity peak. Thisisan
unacceptable result. Thus we conclude that the
closed loop bandwidth should be greater than any
RHP open |oop poles.




©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

We note that this is consistent with the results based
on time domain analysis presented in Chapter 8.
There it was shown that, when the closed |oop
bandwidth is not greater than an open loop RHP
pole, large time domain overshoot will occur.
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Example of Design Trade-offs

We will illustrate the application of the above ideas
by considering the inverted pendulum problem.

Such systems exist in many universities and are used
to illustrate control principles. Thekey ideaisto
balance arod on top of amoving cart (smilar to
balancing a broom on one’ s hand). A photograph of

areal inverted pendulum system (at the University of
Newcastle) is shown on the next dide.
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Example of an Inverted Pendulum
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We will consider the following control problem:

Sensors:

We measure the position of the cart (but NOT the
angle of the pendulum)

Actuators:
We can apply forcesto the cart.

Goal:

We want to position the cart at some location plus
have the pendulum balancing vertically.
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Inverted pendulum without angle
measurement

A schematic diagram of the system is shown below:

Figure 9.4. Inverted pendulum



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

The model for this system was discussed in Chapter
3. A linearized model for the system hasthe
following transfer function linking the cart position
(Y) to the force applied to the cart (F).

Y(s) _, (s=V10)(s +V10)
F(s)  s%(s—+/20)(s + v/20)
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We note that this system has

- an open loop RHP zero at V10
5 an open loop RHP poleat v20

We observe that the RHP pole has greater magnitude
than the RHP zero. The reader isreminded of the
comments made in the following two slides which
appeared in the earlier part of this chapter.
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Indeed, it will turn out that to avoid large frequency
domain sensitivity peaks it is necessary to limit the
range of sensitivity reduction to be:

(1) lessthan any right half plane open loop zero
(1) greater than any right half plane open loop pole.
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This begs the question - “What happens if thereisa
right half plane open loop zero having smaller
magnitude than a right half plan open loop pole?”

Clearly the requirements specified on the previous
dlide are then mutually incompatible. The
consequence isthat large sensitivity peaks are
unavoldable and, as a result, poor feedback
performance is inevitable.

An example precisdy illustrating this conclusion
will be presented | ater.
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We will show formally using the Poisson integral
formulae that the predictions made above are indeed
true for this example.
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We consider various choicesfor w, and w;,, withe =0.1

0w, =+/10 and w,, = 100. Then the equation for S, predicts

that S, =432. Inthiscase, w;, Is much larger than the

unstable pole, thus the large value for the bound results from
w, = /10 being too close to the NMP zero.

0 Whenw, =1 andw, =100, we havethat S, = 16.7, which s
significantly lower than the previous case (although still very
large), since now, w, is much smaller than the NMP zero.

0 Ifw =1, andw, =+/20 weobtainthat T, > 3171, whichis
due to the fact that w,, is too close to the unstable pole.
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0 Ifw, =1, andw, =3 weobtainthat T, = 7.2 x 10°. This
huge lower bound originates from two facts: firstly w, is
lower than the unstable pole, and secondly, w; and w;, are very
close.

We thus see that, no matter how wetry to alocate w, and w;,
large sensitivity peaks occur. Thusthis system seems to be
extremely difficult to control.
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The above conclusion is not unreasonable. (The
reader should try balancing a broom on one’s hand
with one’s eyes shut!)

The key point is that the angle of the pendulum is not
measured.

In alater chapter we will see that a ssimple change in
the architecture made possible by providing a
measurement of the angle turns this near impossible
control problem into avery easy one (see also the
discussion on the web site).
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To illustrate just how hard this problem is, (when the
angle is not measured) we designed a stabilizing
controller as shown on the next dlide.
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C(s) = pfj:éj:ﬁ T—ep O
Where
0y =  -143
0, = -472.8
D, = 72130
D, = 1690.5
b, = -8278.9
(, = -2682.3
(b, = 415



©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter 9

Using the Poisson integrals, we predict

S =634
T . =7.19

The actual sensitivity plots are shown on the next
page. These show that these lower bounds are
Indeed exceeded by the specified controller
presented on the previous slide.
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Figure 9.5. Sengitivities for the inverted pendulum
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Summary

0 One class of design constraints are those which hold at a
particular frequency.

0 Thuswe canview thelaw §j,) =1 - T(j,,) on afrequency
by frequency basis. It states that no single frequency can
be removed from both the sensitivity, §j,,), and
complementary sensitivity, T(j,,)-

0 Thereis, however, an additional class of design
considerations, which results from so called frequency
domain integral constraints, see Table 9.1.
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Table 9.1
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Notation Constraints Interpretation
p; RHP poles oo N Areas of sensitivity below 1 (i.e.
/ In|S,(jw)|dw = 772 R{p: } In|S,| < 0) must be matched by
0 i=1 areas of sensitivity above 1.
c¢; RHP zeros Areas of complementary sensi-
N tivity below 1 must be matched
/oo In|To (jw) dw = 7 Z 1 by areas of complementary sen-
0 w? i 2k sitivity above 1.
W (ck,w) weighting func- The above sensitivity trade-off
tion 0o is focused on areas near RHP
By (ck) Blaschke product 2/ In|So(jw)|W (ck,w)dw = —min|Bp(ck )| zeros.
0
W (pi,w) weighting func- The above complementary sen-
tion 0o sitivity trade-off is focused on
B.(pi) Blaschke product 2/ In|To(jw)|W (pi,w)dw = —mln|B.(p;)| areas near RHP poles.
0
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0 This chapter explores the origin and nature of these integral
constraints and derives their implications for control system
performance:

n The constraints are a direct conseguence of the requirement that all
sengitivity functions must be stable;

1 mathematically, this means that the sensitivities are required to be
analytic in the right half complex plane;

1 results from analytic function theory then show, that this requirement
necessarily implies weighted integrals of the frequency response
necessarily evaluate to a constant;

1 hence, if one designs a controller to have low sensitivity in a particular
frequency range, then the sensitivity will necessarily increase at other
frequencies-a consequence of the weighted integral always being a
constant; this phenomenon has also been called the water bed effect
(pushing down on the water bed in one area, raises it somewhere else).
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0 These trade-offs show that systems become increasingly
difficult to control as

1 Unstable zeros become slower
1 Unstable poles become faster
1 Time delays get bigger.



