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Chapter 10

Architectural Issues in SISO
Control
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This chapter considers 3 related issues namely:-
(1) Exact disturbance compensation and set point tracking 

(leading to the Internal Model Principle)

(2) Use of extra measured information about disturbances 
(leading to disturbance feedforward control)

(3) Use of additional internal measurements (leading to 
cascade control)

These are examples of architectural issues in control
system design.
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Indeed, one of the major tools available to the
control system designer is to be able to adjust the
control system architecture so as to achieve given
performance objectives.  Feedforward and Cascade
control are prime examples of architectural changes
which can significantly effect achieved performance.

The chapter contains an illustration of the positive
influence, architectural issues can have by revisiting
the “Hold-Up Effect” in Reversing Cold Rolling
Mills discussed in Chapter 8.
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1. Exact Disturbance Compensation via
Internal Model Control

Our previous analysis has focused on basic feedback
loop properties and feedback controller synthesis.
Here we will extend the scope of the analysis to
focus on further architectural issues which are aimed
at achieving exact compensation of certain types of
deterministic disturbances and exact tracking of
particular reference signals.
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Models for Deterministic
Disturbances and References
The particular signals of interest here are those that
can be described as the output of a linear dynamic
system having zero input and certain specific initial
conditions.  The simplest example of such a signal is
a constant, which can be described by the model

The generalization of this idea includes any
disturbance that can be described by a differential
equation of the form:

dqdg(t)
dtq

+
q−1∑
i=0

γi
didg(t)

dti
= 0

ẋd = 0 ; xd(0) given
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The above model leads to the following expression
for the Laplace transform of the disturbance:

where  Γd(s) is the disturbance generating
polynomial defined by

Dg(s) =
Nd(s)xd(0)

Γd(s)

Γd(s)
�
= sq +

q−1∑
i=0

γis
i
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Example 10.1

A disturbance takes the following form

where  K1, K2 and K3 are constants.  Then the
generating polynomial is given by

Note that K1, K2 and K3 are related to the initial state,
xd(0), in the state space model.

dg(t) = K1 + K2 sin(3t + K3)

Γd(s) = s(s2 + 9)
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Internal Model Principle for
Disturbance

Disturbance Entry Points.  For a nominal model
G0(s) with input U(s) and output Y(s), we will
assume that the disturbance Dg(s) acts on the plant at
some intermediate point, i.e. we model the output as
follows:

This is illustrated on the next figure.

Y (s) = Go2(s)(Go1(s)U(s) + Dg(s)) where Go(s) = Go1(s)Go2(s)
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Figure 10.1:  Control loop with a generalized
disturbance
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Steady State Disturbance
Compensation

We note that for the generalized disturbance
description given above, and assuming closed loop
stability, the nominal model output and controller
output are given respectively by

From the first equation we observe that the effect of
the disturbance on the model output vanishes
asymptotically when the polynomial Γd(s) is a factor
in the numerator of  S0(s)G02(s).

Y (s) = So(s)Go2(s)Dg(s)

U(s) = −SuoGo2(s)Dg(s) =
To(s)
Go1(s)

Dg(s)
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Specifically,
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Now exact disturbance compensation occurs if the
disturbance generating polynomial appears in the
numerator of S0G02, i.e. in A1, B2 or L.  Under these
conditions, the steady state response is seen to be

For input disturbances, we require that the
disturbance generating polynomial appear in the
numerator of S0.
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We thus conclude:
A sufficient condition for steady state disturbance
compensation is that the generating polynomial be
included as part of the controller denominator.  This
is known as the Internal Model Principle, (IMP).
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To achieve this result the controller takes the form:

where  Γd(s) is the appropriate disturbance
generating polynomial.
Note that integral action, where Γd(s) = s, is a special
case of this result for constant disturbances.

)(
)(

)(
s

sC
sC

dΓ
=
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We next show how the above constraint can be
incorporated into the standard controller synthesis
procedures.  In particular, we will revisit the pole-
assignment strategy.
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Pole Assignment

Taking

Then the Pole Assignment equation becomes

This equation can be solved in the usual way.  If  Γd
has degree  q,  then Acl needs to have degree, at least
2n-1+q.

L
PC

A
B

G
dΓ

== ;
0

0
0

cld APBLA =+Γ 00



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 10

Example 10.2

Consider a nominal model  G0(s) = 3/s+3 and an input
disturbance  dg(t) = K1 + K2 sin(2t + K3).  It is required to
build a controller  C(s)  such that the IMP is satisfied for
this class of disturbances.
We first note that  q = 3, Γd(s) = s(s2 + 4) and n = 1.  This
means that  Acl(s) should at least be of degree  nc = 4.
Say we choose  Acl(s) = (s2 + 4s + 9)(s + 5)2.  We then
have that the controller should have the form

C(s) =
β3s

3 + β2s
2 + β1s + β0

s(s2 + 4)
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The corresponding pole assignment equation becomes

leading to                                    and β0 = 75 (use paq.m).

s(s2 + 4)(s + 3) + 3(β3s
3 + β2s

2 + β1s + β0) = (s2 + 4s + 9)(s + 5)2

3
190

13
74

23
14

3 ,, === βββ
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Industrial Application:  Roll eccentricity
compensation in rolling mills

A common technique used for gauge control in rolling
mills is to infer thickness from roll force measurements.
This is commonly called a BISRA gauge.  However
these measurements are affected by roll eccentricity
(which induces sinusoidal type disturbances).
A very common strategy for dealing with this problem
is to model the eccentricity components as multiple
sinusoids (ten sine waves per roll are typically used;
with four rolls, this amounts to forty sinusoids).  These
sinusoids can be modeled using a generating polynomial
of the form

Γd(s) =
m∏

i=1

(s2 + ω2
i )
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Multi-stand Rolling Mill
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The Internal Model Principle can then be used to
remove the disturbance from the exit gauge.
An illustration of this idea is given on the book’s
web page.
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We next consider the problem of exactly tracking
certain reference signals.
Again we assume that the reference signals can be
modeled by a homogenous equation having
generating polynomial Γr(s).
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Internal Model Principle for
Reference Tracking

For reference tracking, we consider the two degree of
freedom architecture shown in Figure 5.2  (see next slide)
with zero disturbances.  Then the tracking performance can
be quantified through the following equations:

If we are to use the internal model principle for reference
tracking, then it suffices to set  H(s) = 1 and then to ensure
that the reference generating polynomial is included in the
denominator of C(s)G0(s).

Y (s) = H(s)To(s)R(s)
E(s) = R(s) − Y (s) = (1 − H(s)To(s))R(s)
U(s) = H(s)Suo(s)R(s)
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R(s) E(s)

+

+

+

+

+
C(s)H(s)

R(s) U(s) Y (s)

Di(s) xo Do(s)

+

Ym(s)

Dm(s)

Go(s)

+

−

Figure 5.2:  Two degree of freedom closed loop 
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To achieve robust tracking, the reference generating
polynomial must be in the denominator of the
product C(s)G0(s), i.e. the Internal Model Principle
also has to be satisfied for the reference. When the
reference generating polynomial and the disturbance
generating polynomial share some roots, then these
common roots need only be included once in the
denominator of C(s) to simultaneously satisfy the
IMP for both the reference and disturbance.
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Reference Feedforward

We can use a two-degree-of-freedom architecture for
reference tracking.  The essential idea of reference
feedforward is to use  H(s)  to invert  T0(s) at certain
key frequencies, i.e. so that H(s)T0(s) = 1 at the poles
of the reference model (i.e. at �i, i = 1, …, ne).  Note
that, by this strategy, one can avoid using high gain
feedback to bring T0(�i) to 1.  Note, however, that use
of reference feedforward in this way does not give lead
to perfect tracking if there is a change in the model.
This contrasts with the use of the IMP which always
gives exact tracking (provided stability is retained).
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We will next show how extra measurements which
are related to disturbances can be used to improve
the transient performance achieved when
compensating disturbances.  This leads us to the idea
of feedforward control.
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2. Feedforward

The use of the IMP, as outlined above, provides
complete disturbance compensation and reference
tracking in steady state for certain classes of signals
(e.g. constants, sinusoids, etc). However, this leaves
unanswered the issue of transient performance, i.e.
how the system responds during the initial phase of
the response following a change in the disturbance or
reference signal.
We will show how feedforward can aid this problem.
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Disturbance Feedforward

We show how feedforward ideas can be applied to
disturbance rejection.
A structure for feedforward from a measurable
disturbance is shown in Figure 10.2.

+

+

Dg(s)

Go2(s)
+ − +

C(s)
+

Gf (s)

Go1(s)
Y (s)U(s)R(s)

Figure 10.2:  Disturbance feedforward scheme.
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The proposed architecture has the following features
(i) The feedforward block transfer function Gf(s) must be 

stable and proper, since it acts in open loop.
(ii) Ideally, the feedforward block should invert part of the

nominal model, i.e.

(iii) Since usually G01(s) will have a low pass characteristic, we
should expect  Gf(s) to have a high pass characteristic.

1
01 )]([)( −−≅ sGsG f
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Example of Disturbance Feedforward
Consider a plant having a nominal model given by

We assume that the disturbance  dg(t)  consists of
infrequently occurring step changes.  A feedback only
solution to this problem would be hindered by the fact
that the achievable loop bandwidth would be constrained
by the presence of the delay in G0.  We therefore
investigate the use of feedforward control.  We choose
the architecture shown earlier in Figure 10.2 and  choose
-Gf(s) as an approximation to the inverse of G01(s), i.e.

Go(s) =
e−s

2s2 + 3s + 1
Go1(s) =

1
s + 1

Go2(s) =
e−s

2s + 1



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 10

Gf (s) = −K
s + 1
βs + 1

Where β allows a trade off to be made between the 
effectiveness of the feedforward versus the size of the 
control effort.  Note that  K  takes the nominal value  1.

The next figure shows the effect of varying  K  from  0
(no disturbance feedforward) to K = 1 (full disturbance
feedforward).  [A unit step reference is applied at t = 1 
followed by a unit step disturbance at t = 5]. 
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Figure 10.3: Control loop with (K = 1) and without
(K = 0) disturbance feedforward
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We thus see that the use of disturbance feedforward
can anticipate the disturbance and lead to
significantly improved transient response.
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Industrial Application of
Feedforward Control

Feedforward control is generally agreed to be one of
the most useful concepts in practical control system
design beyond the use of elementary feedback ideas.
We will illustrate the idea by revisiting the hold up
effect in Rolling Mills which was discussed in
Chapter 8.
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Hold-Up Effect in Reversing Mill
Revisited

Consider again the Rolling Mill problem discussed
earlier.  There we saw that the presence of imaginary
axis zeros were a fundamental limitation impeding
the achievement of a rapid response between
unloaded roll gap position and exit thickness.  We
called this the hold-up effect.  The physical origin of
the problem is tension interactions.
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Reversing Mill
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Hold Up Effect

The dotted line
represents the expected
disturbance response
whereas what is actually
achieved is the solid line.
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Consider the schematic diagram shown on the next
slide.  We recall that the physical explanation for the
hold-up effect is as follows:

◆ Say the roll gap is opened;
◆ Initially this causes the exit thickness to increase;
◆ However, the exit speed is roughly constant (due to the

action of another control loop), hence more mass comes
out the end of the mill;

◆ Hence the incoming strip velocity must increase to
supply this extra mass flow;
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◆ However, due to the inertia of the uncoiler, this means
that the input tension will increase;

◆ In turn, increased input tension implies a drop in exit
thickness.

The exit thickness increase is thus held up until the
uncoiler current controller can respond and restore
the tension to its original value.

This phenomena manifests itself in the imaginary
axis zero noted in Chapter 8 in the model linking roll
gap to exit thickness.
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Figure 10.6: Feedforward controller for reversing mill
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The above explanation suggests that a remedy might
be to send a pulse of current to the uncoiler motor as
soon as we adjust the roll gap, i.e. to use
FEEDFORWARD.
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Indeed, one can show using the physics of the
problem that tension fluctuations would be avoided
by choosing the uncoiler current as

The above equation is seen to be a feedforward
signal linking (the derivatives of) the unloaded roll
gap position,  σ(t), and the input thickness, hi(t), to
the uncoiler current.

iu(t) =
Juωo

u

vo
i ho

i Km

[
c1v

o
0

dσ(t)
dt

+ c2v
o
0

dhi(t)
dt

− vo
i

dhi(t)
dt

]
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Use of feedforward control in this example removes
the fundamental limitation arising from the
imaginary axis zero.  This is not a contradiction in
terms because the limitation was only fundamental
within the single input (roll gap) single output (exit
thickness) architecture.  Changing the architecture
by use of feedforward control to the uncoiler
currents alters the fundamental nature of the problem
and removes the limitation.
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Result with Feedforward Control

Recall that the solid line
was the best that could
be achieved with a
single degree of freedom
control whereas using
feedforward we can
achieve the dotted line.
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The above example delivers an important message in
solving tough control problems.  Specifically, one
should look out for architectural changes which may
dramatically change a difficult (or maybe
impossible) problem into an easy one.
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3. Cascade Control

Next we turn to an alternative architecture for
dealing with disturbances.  The core idea is to
feedback intermediate variables that lie between the
disturbance injection point and the output.  This
gives rise to so called, cascade control.
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Cascade control is very commonly used in practice.
For example, if one has a valve in a control loop,
then it is usually a good idea to place a cascade
controller around the valve.  This requires
measurements to be made of the flow out of the
valve (see next slide) but can significantly improve
the overall performance due to the linearizing effect
that local feedback around the valve has.
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Figure 10.7: Example of application of cascade control

r(t) +
−

ym(t) qm(t)
C1(s)
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Figure 10.8: Cascade control structure

The generalization of this idea has the structure as
shown below:

+
C1(s)

+ +

Go2(s)

Go1(s)C2(s) Gb(s)Ga(s)

Dg(s)

+

−−

R(s) U1(s) Y (s)

Outer loop

Inner cascade loop
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Referring to Figure 10.8 (previous slide), the main
benefits of cascade control are obtained
(i) when Ga(s) contains significant nonlinearities that limit

the loop performance;

or
(ii) when Gb(s) limits the bandwidth in a basic control 

architecture.
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Example of Cadcade Control

Consider a plant having the same nominal model as
in the previous example on disturbance feedforward.
Assume that the measurement for the secondary loop
is the input to  G02(s),

We first choose the secondary controller to be a PI
controller where

Go1(s) =
1

s + 1
; Go2(s) =

e−s

2s + 1
; Ga(s) = 1; Gb(s) = Go2(s) =

e−s

2s + 1

C2(s) =
8(s + 1)

s
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This leads to an inner loop having effective closed
loop transfer function of

Hence the primary (or outer loop) controller sees an
equivalent plant with transfer function

The outter controller is then designed using a Smith
Predictor (see Chapter 7).

To2(s) =
8

s + 8

Goeq(s) =
8e−s

2s2 + 17s + 8
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The results for the same disturbance as in the
earlier example on disturbance feedforward are
shown in the next slide.  [A unit step reference is
applied at t = 1 followed by a unit step disturbance
at t = 5].
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Figure 10.9: Disturbance rejection with a cascade 
control loop
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Comparing Figure 10.9 with Figure 10.3 we see that
cascade control has achieved similar disturbance
rejection (for this example) as was achieved earlier
using disturbance feedforward.
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The main features of cascade control are
(i) Cascade control is a feedback strategy.
(ii) A second measurement of a process variable is required.

However, the disturbance itself does not need to be measured.
Indeed, the secondary loop can be interpreted as having an
observer to estimate the disturbance.

(iii) Measurement noise in the secondary loop must be considered
in the design, since it may limit the achievable bandwidth in
this loop.

(iv) Although cascade control (in common with feedforward)
requires inversion, it can be made less sensitive to modeling
errors by using the advantages of feedback.
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Summary

❖ This chapter focuses the discussion of the previous
chapter on a number of special topics with high
application value:

◆ internal disturbance models:  compensation for classes
of references and disturbances

◆ feedforward
◆ cascade control
◆ two-degree of freedom architectures
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❖ Signal models
◆ Certain classes of reference or disturbance signals can

be modeled explicitly by their Laplace transform:

◆ such references (disturbances) can be asymptotically
tracked (rejected) if and only if the closed loop contains
the respective transform in the sensitivity S0.

Signal Type Transform
Step 1/s

Ramp (a1s + 1) / s2

Parabola (a2s2 + a1 s + 1) / s3

Sinusoid (a1s + 1) / (s2+w2)
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◆ This is equivalent to having imagined the transforms
being (unstable) poles of the open-loop and stabilizing
them with the controller.

◆ In summary, the internal model principle augments
poles to the open loop gain function G0(s)C(s).
However, this implies that the same design trade-offs
apply as if these poles had been in the plant to begin
with.

◆ Thus internal model control is not cost free but must be
considered as part of the design trade-off
considerations.
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❖ Reference feedforward
◆ A simple but very effective technique for improving

responses to setpoint changes is prefiltering the setpoint
(see next slide).

◆ This is the so called two-degree-of-freedom (two d.o.f.)
architecture since the prefilter H provides an additional
design freedom.  If, for example, there is significant
measurement noise, then the loop must not be designed
with too high a bandwidth.  In this situation, reference
tracking can be sped up with the prefilter.
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◆ Also, if the reference contains high-frequency
components (such as step changes, for example), which
are anyhow beyond the bandwidth of the loop, then one
might as well filter them so not to excite uncertainties
and actuators with them unnecessarily.

◆ It is important to note, however, that design
inadequacies in the loop (such as poor stability or
performance) cannot be compensated by the prefilter.
This is due to the fact that the prefilter does not affect
the loop dynamics excited by disturbances.
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Figure 10.10:  Two degree of freedom architecture 
   for improved tracking
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❖ Disturbance feedforward
◆ The trade-offs regarding sensitivities to reference,

measurement noise, input- and output disturbances as
discussed in the previous chapters refer to the case
when these disturbances are technically or
economically not measureable.
Measurable disturbances can be compensated for
explicitly by disturbance feedforward (see next slide)
thus relaxing one of the trade-off constraints and giving
the design more flexibility.
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Figure 10.11:  Disturbance feedforward structure
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❖ Cascade Control
◆ Cascade control is another well-proven technique applicable

when two or more systems feed sequentially into each other
(see next slide).

◆ All previously discussed design trade-offs and insights apply.
◆ If the inner loop (C2 in Figure 10.12) were not utilized, then

the outer controller (C1 in Figure 10.12) would implicitly or
explicitly estimate y1 as an internal state of the overall
system (G01G02). This estimate, however, would inherit the
model uncertainty associated with G02. Therefore, utilizing
the available measurement of y1 reduces the overall
uncertainty and one can achieve the associated benefits.
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Figure 10.12:  Cascade control structure
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− −

y2(t)
C1 C2
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