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Chapter 11

Dealing with Constraints
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Topics to be covered

An ubiquitous problem in control is that all real actuators
have limited authority.  This implies that they are
constrained in amplitude and/or rate of change. If one
ignores this possibility then serious degradation in
performance can result in the event that the input reaches
a constraint limit. This is clearly a very important
problem. There are two ways of dealing with it:

(i) reduce the performance demands so that a linear controller
never violates the limits, or

(ii) modify the design to account for the limit. 
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Here we give a first treatment of option (ii) based on
modifying a given linear design.  This will usually
work satisfactorily for modest violations of the
constraint (up to say 100%). If more serious
violations of the constraints occur then we would
argue that the actuator has been undersized for the
given application.
We will also show how the same ideas can be used
to avoid simple kinds of state constraints.
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Wind-Up

One very common consequence of an input hitting a
saturation limit is that the integrator in the controller
(assuming it has one) will continue to integrate
whilst the input is constrained.
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Example 11.1:  Consider the following nominal plant
model:

Say that the target complementary sensitivity is

It is readily seen that this is achieved with the following
controller.

Go(s) =
2

(s + 1)(s + 2)

To(s) =
100

s2 + 13s + 100

C(s) =
50(s + 1)(s + 2)

s(s + 13)
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A unit step reference is applied at  t=1  and a
negative unit step output disturbance occurs at
t=10.  The plant input saturates when it is outside
the range  [-3, 3].  The plant output  y(t)  is shown in
Figure 11.1.
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Figure 11.1:  Loop performance with (think line) and without
                     (thin line) saturation at the plant input.
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We observe from Figure 11.1 that the plant output
exhibits undesirable transient behavior which is
inconsistent with the linear nominal bandwidth of
approximately  10[rad/s].  This deficiency originates
from the saturation, since a unit step in the reference
produces an instantaneous demanded change of 50
in the controller output and hence saturation occurs,
which a linear design procedure for  C(s)  does not
take into account.
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Anti-Windup Scheme

There are many alternative ways of achieving
protection against wind-up. All of these methods rely
on making sure that the states of the controller have
two key properties;  namely

(i)  the state of the controller should be driven by the actual 
(i.e. constrained) plant input;

(ii) the states of the controller should have a stable realization 
when driven by the actual plant input.
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This is particularly easy to achieve when the
controller is biproper and minimum phase.  Say that
the controller has transfer function   C(s), then we
split this into the direct feedthrough term  C∞ and a
strictly proper transfer function  C(s);  i.e.

Then consider the feedback loop shown in Figure
11.2.

C(s) = c∞ + C(s)
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Figure 11.2:  Feedback form of biproper controller

The transfer function from  e(t)  to  u(t)  in Figure
11.2 is readily seen to be

U(s)
E(s)

=
c∞

1 + ([C(s)]−1 − c−1∞ )c∞

=
c∞

[C(s)]−1c∞
= C(s)

u(t)e(t)
c∞

−+

[C(s)]−1 − c−1
∞

A
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We next redraw Figure 11.2 as in Figure 11.3.

In the case of a limited input, all we now need to do
is to ensure that the correct relationship is achieved
between the desired and actual input.

c∞

[C(s)]−1 − c−1∞

+

−

desired input

actual input

Figure 11.3:  Desired and actual plant input
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Saturation

Where         is the unconstrained controller output
and  u(t)  is the effective plant input.

)(ˆ tu

u(t) = Sat〈û(t)〉 �
=




umax if û(t) > umax,

û(t) if umin ≤ û(t) ≤ umax,

umin if û(t) < umin.

The appropriate function to describe input saturation is:



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 11

Slew Rate Limit

u̇(t) = Sat〈 ˙̂u(t)〉 �
=




σmax if ˙̂u(t) > σmax,

˙̂u(t) if σmin ≤ ˙̂u(t) ≤ σmax,

σmin if ˙̂u(t) < σmin.

Similarly, we can describe a limit on the rate of 
change of the input (called slew rate) as follows:

A block diagram realization of a slew rate limiter 
is shown on the next slide.
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Figure 11.4:  Slew rate limit model

û(t)
∆σmax

u(t)
∆σmin

delay

−

+

+
+

∆[s]

e−∆s
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Figure 11.5:  Combined saturation and slew rate limit model

∆σmin umin

+ umax∆σmax−
u(t)

e−∆s

+
+û(t)

A slew rate limiter can be combined with a saturation 
constraint as follows:
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Figure 11.6:  Simplified anti wind-up control loop (C form)

G(s)
y(t)

+

[C(s)]−1 − c−1
∞

Lim Lim
u(t)

c∞
+

r(t) e(t) û(t)

−−

Referring back to Figure 11.3, we can realize an 
anti-windup compensated controller by placing the
appropriate limiter into the block diagram connecting
the desired input to the actual (or allowed) input.  This
leads to the feedback loop shown below:
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Example 11.2:  Consider the same plant as in
Example 11.1 with identical reference and
disturbance conditions.  However, this time we
implement the control loop using anti-windup
protection.
On running a simulation, the results are shown in
Figure 11.7, where the plant output has been plotted.
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Figure 11.7: Loop performance with anti wind-up controller
        (thick line) compared to performance achieved

                    with no anti wind-up feature (thin line). The
         latter corresponds to the thick line in Figure 11.1
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A second example having slew
rate limits is described below.

Consider a plant having a linear model given by

Assume that a PI controller with KP=0.5  and Tr=1.5[s],
has been tuned for the linear operating range of this
model, i.e., ignoring any nonlinear actuator dynamics.
If the input u(t) cannot change at a rate faster than
0.2[s-1], verify that implementation of the controller as in
Figure 11.6 provides better performance than ignoring
the slew rate limitation.

Y (s) = e−s

(
1

(s + 1)2
U(s) + Dg(s)

)
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Solution

We build a control loop with the controller structure
shown in Figure 11.6 (see the next slide) with Lim
replaced by the slew rate limiter in Figure 11.4.

c∞ = Kp = 0.5; [C(s)]−1 − c−1
∞ = − 1

Kp(Trs + 1)
= − 2

(1.5s + 1)
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Figure 11.6:  Simplified anti wind-up control loop (C form)

G(s)
y(t)

+

[C(s)]−1 − c−1
∞

Lim Lim
u(t)

c∞
+

r(t) e(t) û(t)

−−
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Figure 11.8:  Performance of PI control loop when no slew
         rate limitation exists (1), with slew rate 
         limitation but no compensation (2) and with anti
         wind-up for slew rate limitation (3)
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Interpretation in terms of
Conditioning

Here we ask the following question:  What conditioned
set-point    would have avoided producing an input
beyond the limits of saturation in the first place?
We assume that  C(s)  is biproper and can hence be
expanded in terms of its strictly proper and feed-through
terms as

Let us assume that we have avoided saturation up to this
point in time by changing  e(t) to       . Then, at the
current time, we want to choose    so that ...

r û

C(s) = C(s) + c∞

)(te
e
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Clearly this requires that we choose     ase

C〈e〉 = usat = Sat〈C〈e〉 + c∞e〉 = C〈e〉 + c∞e

e = c−1
∞

[
Sat〈C〈e〉 + c∞e〉− C e

]
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The above formula can be represented as in Figure
11.9.

e(t)α

−
Sat〈.〉c∞

e(t)

+

+

γ

usat(t)

β

C(s)

+
c−1
∞

Figure 11.9:  Condition equivalent for the 
          anti wind-up controller
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To show that this is equivalent to the previous design, we
note that in Figure 11.9

From where

Also

and

Hence the scheme in Figure 11.9 implements the same
controller as that in Figure 11.6.

γ(t) = c−1
∞ C〈usat(t) − γ(t)〉 ⇔ c∞γ(t) = C〈usat(t)〉− C〈γ(t)〉

γ(t) = −c∞(C−1 − c−1
∞ )〈usat(t)〉

β(t) = c∞e(t) + γ(t) = c∞
(
e(t) − (C−1 − c−1

∞ )〈usat(t)〉
)

usat(t) = Sat〈β(t)〉
usat(t) = Sat

〈
c∞

(
e(t) − (C−1 − c−1

∞ )〈usat(t)〉
)〉
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State Saturation

As a further illustration of the application of anti-
windup procedures, we next show how they can be
applied to maintain state limits.
We consider a plant with nominal model given by

Y (s) = Go(s)U(s); Z(s) = Goz(s)U(s)
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We achieve state constraints based on switching
between two controllers.  One of these controllers
(the prime controller) is the standard controller
aimed at achieving the main control goal, i.e. that the
plant output  y(t)  tracks a given reference, say ry(t).
The task for the secondary controller is to keep the
variable z(t) within prescribed bounds. This is
achieved by use of a secondary closed loop aimed at
the regulation of the estimated state,       using a
fixed set point.

)(ˆ tz
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Our strategy will be to switch between the primary
and secondary controller. However, it can be seen
that there is a strong potential for wind-up since one
of the two controllers, at any one time, will be
running in open loop.  We will thus implement both
controllers in anti-windup form.
For simplicity of presentation, we assume that a
bound is set upon |z(t)|, i.e. that z(t) is symmetrically
bounded.
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Both controllers have been implemented as in Figure
11.6.  Thus, the prime (linear) controller has a
transfer function  Cy(s), given by

Analogously, the secondary (linear) controller has a
transfer function  Cz(s), given by

The final composite controller is shown on the next
slide.

Cy(s) =
cy∞

1 + cy∞Hy(s)
; Hy(s) = [Cy(s)]−1 − c−1

y∞

Cz(s) =
cz∞

1 + cz∞Hz(s)
; Hz(s) = [Cz(s)]−1 − c−1

z∞
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Figure 11.10:  Switching strategy for state saturation
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⋅W is a switch which transfers between the two controllers.
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Substitutive Switching with
Hysteresis

A simple approach is to transfer the generation of the
real plant input, u(t) from one controller to the other,
in such a way that, at any time, u(t) is determined by
either uy(t) or uz(t).
If we aim to keep |z(t)| bounded by a known constant
zsat > 0, then this approach can be implemented using
a switch with hysteresis, where the switching levels
zl and zh, are chosen as 0 < zl < zh < zsat.
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Weighted Switching

A switching strategy which is an embellishment of
the one described above is described next.  It also
relies on the use of the switching levels z1 and zh, but
with the key difference that now the (unsaturated)
plant input u(t) is a linear combination of uy(t) and
uz(t), i.e.

u(t) = Sat〈λuz(t) + (1 − λ)uy(t)〉



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 11

Where λ ∈  [0, 1] is a weighting factor.  One way of
determining λ would be:

λ =




0 for |z(t)| ≤ zl

|z(t)| − zl

zh − zl
for zh > |z(t)| ≥ zl

1 for |z(t)| > zh
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Example 11.4:  Consider a plant with a model

where  Y = G0U  and  Z =G0zU.
The reference is a square wave of unity amplitude
and frequency 0.3[rad/s]. It is desired that the state
z(t) does not go outside the range [-1.5; 1.5].
Furthermore, the plant input saturates outside the
range [-2; 2].

Go(s) =
16

(s + 2)(s + 4)(s + 1)
; Goz(s) =

16
(s + 2)(s + 4)
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For this plant, the primary and secondary controller
are designed to be

The basic guidelines used to develop the above
designs is to have the secondary control loop faster
than the primary control loop, so that the state z(t)
can be quickly brought within the allowable bounds.

Cy(s) =
90(s + 1)(s + 2)(s + 4)

16s(s2 + 15s + 59)
; Cz(s) =

16(3s + 10)(s + 4)
s(s + 14)
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Figure 11.11:  Process variable z(t) (i) with state control 
           saturation (zc) and (ii) without state control 
           saturation (zu)
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Note that, whereas the unconstrained state exceeds 
1.5 in magnitude, the solution with switched controller 
leads to z not exceeding the desired magnitude constraint.
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Figure 11.12:  Plant output with (yc) and without (yu) state
control saturation
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We observe that the effect of imposing the state
constraint is to cause the output (yc) to respond more 
slowly than when the state is unconstrained (yu). 
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The evolution of the weighting factor λ(t) is shown in
Figure 11.13.
Figure 11.13 shows that the strategy uses a weight
which does not reach its maximum value, i.e. the
upper level zh is never reached.
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Figure 11.13:  Weighting factor behavior
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Summary
❖ Constraints are ubiquitous in real control systems

❖ There are two possible strategies for dealing with them
◆ limit the performance so that the constraints are never

violated
◆ carry out a design with the constraints in mind

❖ Here we have given a brief introduction to the latter idea
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❖ A very useful insight is provided by the arrangement
shown below:

=

x−1
∞

X − x∞

X−1+

−

Figure 11.14:  Implicit inversion X-1

This idea has been used throughout this chapter to
generate control strategies incorporating anti-windup
protection.


