Chapter 12

Models for Sampled Data
Systems
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Motivation

Up to this point in the book, we have assumed that the
control systems we have studied operate in continuous
time and that the control law Is implemented in
analogue fashion. Certainly in the early days of
control, all control systems were implemented via
some form of analogue equipment. Typically
controllers were implemented using one of the

following formats.-
5 hydraulic
7 pneumatic
- analogue electronic
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However, in recent times, amost all analogue
controllers have been replaced by some form of
computer control.

Thisisavery natura move since control can be
concelved as the process of making computations based
on past observations of a system’s behaviour so asto
decide how one should change the manipulated
variables to cause the system to respond in adesirable
fashion.

The most natural way to make these computationsisvia
some form of computer.
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A huge array of control orientated computers are
available in the market place.

A typical configuration includes:

5 some form of central processing unit (to make the necessary
computations)
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1 analogue to digital converters (to read the analogue process
signals into the computer).

(We call thisthe process of SAMPLING)

- digital to analogue converters (to take the desired control
signals out of the computer and present themin a form
whereby they can be applied back onto the physical process).

(We call thisthe process of SIGNAL RECONSTRUCTION)



Chapter 12 Goodwin, Graebe, Salgado®, Prentice Hall 2000

Types of Control Orientated Computer

Depending upon the application, one could use many
different forms of control computer. Typica control
orientated computers are:

DCS (Distributed Control System) These are distributed
computer components aimed at controlling alarge plant.

PLC (Programmable Logic Controller) These are special
purpose control computers aimed at simple control tasks -
especially those having many on-off type functions.

PC (Personal Computer) Thereisan increasing trend to smply
use standard PC’sfor control. They offer many advantages
Including minimal cost, flexibility and familiarity to users.
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Embedded Controller. In specia purpose applications, it is
guite common to use special computer hardware to
execute the control algorithm. Indeed, the reader will be
aware that many commonly used appliances (CD players,
automobiles, motorbikes, etc.) contain special
microprocessors which enable various control functions.
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Why Study Digital Control?

A simple (engineering) approach to digital control is
to sample quickly and then to make some reasonable
approximation to the derivatives of the digital data.
For example, we could approximate the derivative of
an analogue signal, y(t), asfollows:

y(t)-y(t=-4)
A

where A isthe sampling period.
The remainder of the design might then proceed

exactly as for continuous time signals and systems
using the continuous model.

d
F t ~
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Actually, the above strategy turns out to be quite good
and It Is certainly very commonly used in practice.

However, there are some unexpected traps for the
unwary. These traps have lead to negative experiences
for people naively trying to do digital control by
simply mimicking analogue methods. Thusit is
Important to know when such simple strategies make
sense and what can go wrong. We will illustrate by a
simple example below.
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D.C. Servo Motor Control

We consider the control of ad.c. servo system viaa
computer. Thisisavery smple example. Yet we
will show that this ssimple example can (when it is
fully understood) actually illustrate almost an entire
course on control.

A photo of atypical d.c. servo system is shown on
the next dide.
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Photo of Servo Laboratory System
with Digital Control viaa PC
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The set-up for digital control of this system is shown
schematically below:

input output
I—» Plant

D/A A/D

Digital

controller

!

i

The objective Is to cause the output shaft position,
y(t), to follow a given reference signal, y (t).
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Modelling

Since the control computations will be done inside
the computer, it seems reasonable to first find a
model relating the sampled output, { y(kA); k=10, 1,
... } to the sampled input signals generated by the
computer, which we denote by {u(kA), k=0, 1, ... }.
(Here A isthe sample period).
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ater in this chapter that the output at
0e modelled as alinear function of past

past controls. (We ask that the reader

accept this for the moment).

Thus the (discrete time) model for the servo takes the

form:

y(k+1A)=a,y(kA)+a,y(k-14)+b,u(ka)+byu(k -1A)
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A Prototype Control Law

Conceptually, we want y(kT]A) to go to the desired
value y*. This suggests that we could smply set the
right hand side of the equation on the previous slide
equal to y*. Doing thiswe seethat u(kA) becomes a
function of y(kA) (aswell as y(k-1A)and u(k-14).
At first glance this looks reasonabl e but on reflection we
have left no time to make the necessary calculations.
Thus, it would be better if we could reorganize the
control law so that u(kA) becomes a function of
y(k=14), ... . Actualy this can be achieved by
changing the model slightly as we show on the next slide.
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Model Development

Substituting the model into itself to yield:
y(k+1a)=a {y(ka)} +a,y(k-1a)
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We see that y(kTJA takes the following form:
ylk+1A)=ayylk-1A)+a,y(k-2A)
+Bulka)+Bulk-1a)+ pulk-21)

where a, =a; +a, €etc.
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Actualy, a,, a,, B, B>, 5, can be estimated from the
physical system. We will not go in to details here.

However, for the system shown earlier the values
turn out to be asfollows for A = 0.05 seconds:

a, = 0.03554
a, = 0.03077
Bl

B, =-1.648
[; = 0.6483



Chapter 12 Goodwin, Graebe, Salgado®, Prentice Hall 2000

A Modified Prototype Control Law

Now we want the output to go to the reference y*.
Recall we have the modd!:

ylk+1A)=a,ylk-10)+a,ylk-2A)
+B.u(ka )+ Bulk~18)+ Boulk-21)

This suggests that all we need dois set Y(kTJAj equal
to the desired set-point y* (kTJA) and solve for u(kd).
The answer is
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U(kA)Z y* (kT]A)—aly(k——]A)—az y(kTZA)—,Bzu(FA)—,%u(kuA)
P
Notice that the above control law expressesthe
current control u(kA) as afunction of

- the reference, y* (k+1A)
- past output measurements, y (k—=14), y|
; past control signals, ulk=1A),u{k—2A

k=24
)
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Also notice that 1 sampling interval exists between
the measurement of y(k—-1A) and the time needed
to apply u(kl); i.e. we have specifically allowed
time for the computation of u(kA) to be performed
after y(leAj is measured!
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Recap

All of thisisvery plausible so far. We have obtained
asimple digital control law which causes y(k+1A)
to go to the desired value y*(kTJA) in one step !

Of course, the real system evolves in continuous
time (readers may care to note this point for later
consideration).
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Simulation Results

To check the above idea, we run a computer
simulation. The results are shown on the next slide.
Here the reference is asguare wave. Notice that, as
predicted, the output follows the reference with a
delay of just 2 samples.
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Simulation Results with
Sampling Period 0.05 seconds
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Experimental results

However, when we try this on areal system, the
results are extremely poor! Indeed, the system
essentially goes unstable.

] Can the reader guess some of the causes for the

difference between the ideal simulation results and
the very poor real results?
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Causes of the Poor Response

It turns out that there are many reasons for the poor
response. Some of these are:

1. Intersampleissues

2. |nput saturation

3. Noise

4. Timing jitter
The purpose of this chapter and the following two
chaptersisto understand these issues. To provide

motivation for the reader we will briefly examine
these issues for this ssmple servo example.
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1. Intersample Issues

If we look at the output response at arate faster than
the control sampling rate then we see that the actual
response is as shown on the next slide.
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Simulation result showing full
continuous output response
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Thisisrather surprising! However, if we think back
to the original question, we only asked that the
sampled output go to the desired reference. Indeed it
has. However, we said nothing about the

Intersampl e response!

A full explanation of this phenomenon will be given
in Chapter 14.
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2. Input Saturation

Looking again at the simulations, we see that this
particular control law s calling for very large input
signals. However, the D/A converter on the real
servo Kit only operates on arange of 10 volts.

We thus repeat the ssmulation but clamp the voltage
at 10 volts. The result is an unstable response.
Indeed, clamping at £100 volts still gives very poor
results as shown on the next dlide.
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L ooking between the samples reveals even more
structure to the result shown above. See the next
side.
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The reader may recall that we studied windup and
Input saturation in Chapter 11. Maybe we should try
the ideas presented in Chapter 11 here.

We recall from Chapter 11 that the essential trick in
anti-windup schemes is to ensure that the states of the
control law are told that the input has saturated. This
means that all we need do Is to ensure that the
saturated past input signals are stored in the computer
to be used in subsequent control law calculations.
Making the test gives the result on the next slide.
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Experimental results revisited

Going back to the real servo kit and applying the
above idea with anti-windup protection at £10 volts
gives the results on the next dide.
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We see that we now, at least, have achieved stable
operation. However, the results are nowhere near as
good as those predicted by ssmulation.
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3. Noise

One further point that we have overlooked is that
causing y(t) to approach y* as quickly as possible
gives avery wide bandwidth controller. However,
we saw in Chapter 8 that such a controller will
necessarily magnify noise. Indeed, if we look at the
steady response of the system (see the next slide)
then we can see that noise Is indeed causing
problems.
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4. Timing Jitter

—inally we realize that this particular real controller
nas been implemented in a computer that does not
nave areal-time operating system. This means that
the true sampling rate actually varies around the
design value. We call thistiming jitter. This can be
thought of as introducing modelling errors. Y et we
are using a wideband controller. Thus, we should
expect significant degradation in performance
relative to the idealized ssmulations.
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Finally, we make a much less demanding design and
try assmple digital PID controller on the real system.
Theresults are entirely satisfactory as can be seen on
the next dide. Of course, the design bandwidth is
significantly less than was attempted with the

previous design.
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Hopefully the above example has motivated the
reader to say - “let’ s study digital control”.

By the time you have studied the next three chapters
you will understand all of the features of the above
simple problem, e.g.

5 how to build the model;

1 what are the special features of the one-step-ahead
control law we have used; and

5 why funny things can (and sometimes do) happen
between samples.
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The current chapter is principally concerned with
modelling issues, i.e. how to relate samples of the

output of a physical system to the sasmpled data
Input.
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Specific topics to be covered are:

5 Discrete-time signals

1 Z-transforms and Delta transforms
1 Sampling and reconstruction

1 Aliasing and anti-aliasing filters

1 Sampled-data control systems
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Sampling

The result of sampling a continuous time signal Is
shown below:

X
X
—_— A/D —— =
xxxx
x Xxxx*
X
X

continuous- time signal  Analog to digital converter sampled signal

Figure 12.10: The result of sampling
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There will always be loss of information due to
sampling. However, the extent of this loss depends
on the sampling method and the associated
parameters. For example, assume that a sequence of
samplesistaken of asignal f(t) every A seconds,
then the sampling frequency needsto be large
enough in comparison with the maximum rate of
change of f(t). Otherwise, high frequency
components will be mistakenly interpreted as |low
frequencies in the samples sequence.
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Example 12.1

Consider the signal
f(t) = 3cos 27t + cos (207Tt + g)

We observe that if the sampling period A ischosen equal
to 0.1]s] then

f(kA) = 3cos(0.2k7) + cos (Qkﬁ - %)

= 3cos(0.2km) + 0.5

from where it is evident that the high frequency
component has been shifted to a constant, i.e. the high
frequency component appears as a signal of low frequency
(here zero). This phenomenon is known as aliasing.
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This effect isillustrated on the next slide.
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Figure 12.1. Aliasing effect when using low sampling
rate
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Conclusion:

To mitigate the effect of aliasing the sampling rate
must be high relative to the rate of change of the
signals of interest. A typical rule of thumb isto
require that the sampling rate be 5 to 10 times the
bandwidth of the signals.
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Signal Reconstruction

The output of adigital controller is another sequence
of numbers{u[k]} which are the sample values of
the intended control signal. These sample values
need to be converted back to continuous time
functions before they can be applied to the plant.
Usually, this is done by interpolating them into a
staircase function u(t) asillustrated in Figure 12.2.
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lHlustration of Signal Reconstruction

sampled signal Digital to analog converter reconstructed signal

g 2
X B
Sl Al el remsill
XX —
g

Figure 12.11: The result of reconstruction
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Modelling

Given the process of signal reconstruction and
sampling, we see that the net result is that, inside the
computer, the system input and output simply appear
as seguences of numbers.

It therefore makes sense to build digital models that
relate a discrete time input sequence, {u(k)}, toa
sampled output sequence { y(kA)} .



Chapter 12 Goodwin, Graebe, Salgado®, Prentice Hall 2000

L inear Discrete Time Models

A useful discrete time model of the type referred to
above isthe linear version of the high order

difference equation model. In the discrete case, this
model takes the form:

ylk +nl+ an_1ylk +n—1] 4+ --- + apylk]
= bp_qulk+n — 1]+ -+ + boulk]

Note that we saw a special form of this model in

relation to the motivational servo example presented
earlier.
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To smplify the way we write the model equations,
we will find it useful to have a simple notation to
represent a time-shifted output sample, y(WAJ
We introduce a special operator (the shift operator)
that allows us to write this very compactly.
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The Shift Operator

Forward shift operator

q(f[K]) = flk +1]
In terms of this operator, the model given earlier
becomes:

¢"yk] 4+ Cn-1q" "ylk] + - -+ + Toylk] = bng™ulk] + - - + boulk]

For adiscrete time system it Is also possible to have
discrete state space models. In the shift domain these
models take the form:
qr[k] = Aqu[k] + Bqulk]
ylk] = Cqz|k] + Dgulk]
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Z-Transform

Analogously to the use of Laplace Transforms for
continuous time signals, we introduce the Z-transform
for discrete time signals.

Consider asequence{Vylk]; k=0, 1, 2, ...]. Thenthe
Z-transform pair associated with {y[K]} 1S given by
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A table of Z-transforms of typical sequencesisgiven
In Table 12.1 (see the next dide).

Also, atable of Z-transform propertiesisgiven in
Table 12.2 (see the slide after next).
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f1k] Z [f[K]] | Region of convergence
7} = AT
yeld 1 |z| >0
7
k i
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z(z—1)
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z
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z(z — cos )
k6 1
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Table 12.1: Z-transformtable
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| il | Z [f[k]] | Names |
I ]
Z a; filk] Z a; F;(z) Partial fractions
}[k 4] le—’:(;) — zf(0) Forward shift
k
; fl1] ; i 3 (2) Summation
flk —1] e T R Backward shift
ylk — lplk — 1] beEe g Unit step
kf (k] —zdlj{iz)
Lf1H P
klim ylk] lirrilz(z —1)Y(2) Final value theorem
]liir%) y[k] zlggo Y (z) Initial value theorem
k
Z f1ll] f2[k = 1] Fi(2)F(2) Convolution
1=0
f1lk] fa[K] % F1(¢)F» (g) % Complex convolution
(N fu[k] Fi (%) Frequency scaling

Table 12.2: Z-transform properties. Note that F.(2) = Z[f,[K]], (K]
denotes, as usual, a unit step, y[ o] must be well
defined and the convolution property holds provided
that f,[K] = f,[k] = Ofor all k< O.
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How do we use Z-transforms ?

We saw earlier that Laplace Transforms have a
remarkable property that they convert differential
equations into algebraic equations.

Z-transforms have a similar property for discrete
time models, namely they convert difference
equations (expressed in terms of the shift operator q)
Into algebraic equations.

We illustrate this below for a discrete high-order
difference equation model:
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Discrete Transfer Functions

Taking Z-transforms on each side of the high order
difference equation model leads to

A (2)Y,(2) = By(2)Uq(2) + fo(2,%0)

where Y,(2), U,(2) arethe Z-transform of the sequences
{ylK]} and {u[k]} respectively, and

AQ(Z) =z" + an—lzn_l el
By(2) = bp2™ 4+ bpo12™ T 4 -4 b,
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We then see that (ignoring the initial conditions) the
Z-transform of the output Y(z) is related to the Z-
transform of the input by Y(z) = G,(2U(z) where

AN B,(z)
__14q(z)

Gq(2)

G,(2) s called the discrete (shift form) transfer
function.
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An interesting observation

We see from Table 12.1 that the Z-transform of a
unit pulseis 1. Also, we havejust seen that Z-
transform of the output of discrete linear systems
satisfies

Y(2) = G,(9U(9)

where G(2) isthe transfer function and U(2) the
INput.

Hence, the transfer function is the Z-transform of the
output when the input is a Kronecker delta.
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Example;

Find the unit step response of a system with transfer

function given by

0.5
Gq(z) i z+ 0.8

Solution: The Z-transform of the step response,
y[K], Is given by

0.5 0.5z
ey L e e

Expanding in partial fractions (use MATLAB command residue) we obtain

Vi) = 5t~ g < oM = - (1 (~05)") ul#

The response is shown on the next slide.
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Figure 12.3: Unit step response of a system
exhibiting ringing response
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Note that the response contains the term (-0.5)X,
which corresponds to an oscillatory behavior (known
asringing). Indiscrete time thiscan occur (asinthis
example) for asingle negative real pole whereas, in
continuous time, a pair of complex conjugate poles
are necessary to produce this effect.
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Discrete Delta Domain Models

The shift operator (as described above) isused in the
vast mgjority of digital control and digital signal
processing work. However, in some applications the
shift operator can lead to difficulties. The reason for
these difficulties are explained bel ow.
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Consider the first order continuous time equation

py(t) +y(t) = d?ii—iﬂ + y(t) = u(t)

and the corresponding discretized shift operator
equation is of the form:

azqy(tx) + a1y(ty) = bru(ly)
Expanding the differential explicitly asalimiting
operation, we obtain the following form of the

continuous time equation:
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If we now compare the discrete model to the
approximate expanded form, namely

a,y(t+A)+a,y(t)=bu(t); whereA=t,, ~t,
we then see that the fundamental difference between

continuous and discrete time is that the discrete

model describes absolute displacements (i.e. y(t+A)
In terms of y(t), etc.) whereas the differential

equation describes the increment

e y(t+AA)—y(t)
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Thisfundamental difficulty isavoided by use of an
alternative operator; namely the Delta operator:

s(rikay, LT DA~ FG8)

For sampled signals, an important feature of this
operation Is the observation that

lim, [6{£(bA)}] = p(f (1))

1.e., the Delta operator acts as aderivative in the limit as
the sampling period — 0. Note, however, that no

approximations will be involved in employing the Delta
operator for finite sampling periods since we will derive
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exact model descriptions relevant to this operator at the

given sampling rate.

We next develop an alternative discrete transform (which
we call the Delta transform) which is the appropriate
transform to use with the Delta operator, I.€.

Time Domain

Transfer Domain

q
o)

Z-transform
delta transform
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Discrete Delta Transform

We define the Discrete Delta Transform pair as:

Dly(kA)] = Vs(y) = 3 (1 +9A) Fy(kA)A
k=0

1

D~ [¥3(1)] = y(hAd) = 5 74 (1 +7A)1Y5(3)dy

The Discrete Delta Transform can be related to Z-
transform by noting that
Ys(v) = AY,(2)

z=A~v+1

where Y,(2) = Z[(kA)]. Conversely

() = < Y5()

i
Beisrioa
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0 The next dide shows atable of Delta transform pairs,
0 The slide after next lists some Delta transform properties.
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: (1 + Av)w,sinc(w,A) 1 £
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sin(w,Ak) V2 + Ad(wo, A)y + $(wo, ﬁ) LA TA
where sinc(w,A) = Smugwi())
2(1 — cos(w,A
A i LS;W»
(1 4+ Av) (7 + 0.5A¢(w,, A)) | L
cos(woAk) 2+ Ap(we, D)) + d(wo, A) LRI

Table 12.3: Dedta Transform Table
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| K] | DIfTk] | Names
7
Z a; filk Z a;i F;(7) Partial fractions
] (A + D(EE) = f[0) Forward shift
Alk+ 1= Al vF1(v) — (1 +~A) f1[0] Scaled difference
Z A lF( ) Reimann sum
f[k: 1] (A +4AY " F(y) + fl-1] Backward shift
flk = Hulk 1] (11+ vAA) dl{f( )
1K )
1 F(Q)
il / 17 A%
lim flk] hi% vF(v) Final value theorem
lllir%) f1k] o % Initial value theorem
k=
Z Al felk = 1A Fi(v)F2(v) Convolution
1=0
filk] f2[k] % Fi(¢Q)Fz (17_‘__ CCA> - fi N Complex convolution
(1 +ad)k fulk] F 11‘@‘;)

Table 12.4: Delta Transform properties. Note that F;(y) = D[fi[K]],
U[K] denotes, as usual, a unit step, f[oo] must be well
defined and the convolution property holds provided

that f,[K] = f,[K]

= QOfor all k< O.
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Why Isthe Delta Transform sometimes
better than the Z-Transform?

As can be seen from by comparing the Z-transform
givenin Table 12.1 with those for the Laplace
Transform given in Table 4.1, expressions in Laplace
and Z-transform do not exhibit an obvious structural
equivalence. Intuitively, we would expect such an
equivalence to exist when the discrete sequence is
obtained by sampling a continuous time signal.

We will show that this indeed happens if we use the
alternative delta operator.
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In particular, by comparing the entriesin Table 12.3
(The Delta Transform) with those in Table 4.1 (The
Laplace Transform) we see that akey property of
Delta Transforms is that they converge to the
assoclated Laplace TransformasA -0, i.e.

lim Y5(1) = Y ()

S ==

We illustrate this property by a simple example:
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Example 12.9

Say that {y[K]} arisesfrom sampling, at period A, a
continuous time exponential 2. Then

ylk] = "2
and, from Table 12.3

Y5(y) = 7_1_{12;1]

In particular, note that asA -0, Y5 (y) - ﬁ which
is the Laplace transform of e~.

Hence we confirm the close connections between the
Delta and Laplace Transforms.
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How do we use Ddta Transforms?

We saw earlier in this chapter that Z-transforms
could be used to convert discrete time models
expressed in terms of the shift operator into algebraic
equations. Similarly, the Delta Transform can be
used to convert difference equations (expressed in
terms of the Delta operator) into algebraic equations.
The Delta Transform also provides a smooth
transition from discrete to continuous time as the
sampling rate increases.
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We next examine several properties of discrete time
models, beginning with the issue of stability.
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Discrete System Stability

Relationship to Poles

We have seen that the response of a discrete system
(in the shift operator) to an input U(2) hasthe form

fa(2, %)

(z—a1)(z—as) -+ (2 — an)

Y(2) = Gy(2)U(2) +

where a; ... a, arethe poles of the system.

We then know, via a partial fraction expansion, that
Y(2) can be written as

i — Z zﬁ—]Z + terms depending on U(z)
= ;
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where, for simplicity, we have assumed non repeated
poles.

The corresponding time response is

ylk] = B, [ozj]k + terms depending on the input

Stability requiresthat [a]* — O, which isthe case if
0]] < 1.

Hence stability requires the poles to have magnitude
essthan 1, i.e. to lieinside a unit circle centered at
the origin.
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Delta Domain Stability

We have seen that the delta domain is ssmply a shifted
and scaled version of the Z-Domain, i.e.

y=%2"1and Z=yA+1. It followsthat the Delta
Domﬁ n stability boundary is ssimply a shifted and
scaled version of the Z-domain stability boundary. In
particular, the delta domain stability boundary is a
circle of radius Y/, centered on - %/, in the y domain.
Note again the close connection between the
continuous s-domain and discrete o-domain, since the
o-stability region approaches the s-stability region
(OLHP) asA - 0.
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Discrete Models for Sampled
Continuous Systems

So far in this chapter, we have assumed that the
model is aready given in discrete form. However,
often discrete models arise by sampling the output of
a continuous time system. We thus next examine
how to obtain discrete time models which link the
sampled output of a continuoustime systemto a
sampled input.

We are thus interested in modelling a continuous
system operating under computer control.
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A typical way of making thisinterconnection is
shown on the next slide.

The analogue to digital converter (A/D in the figure)
Implements the process of sampling (at some fixed
period A). The digital to analogue converter (D/A In
the figure) interpolates the discrete control action
Into afunction suitable for application to the plant
INpUL.
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Figure 12.4. Digital control of a continuous time
plant

input
Plant
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the plant input Is

When a zero order hold is used to reconstruct u(t),

then

u(t) = ulk]

for kA<t<(k+1A

Note that thisisthe staircase signal shown earlier in
Figure 12.2. Discrete time modelstypically relate

the sasmpled signal y
Also adigital control
based on y[j] and r[j.
sequence and | < k.

k] tothe sampled input u[K].
er usually evaluates u[k]

, Where {r(kA)} isthereference
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Using Continuous Transfer
Function Models

We observe that the generation of the staircase signal
u(t), from the sequence {u(k)} can be modeled asin
Figure 12.5.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 12.5. Zero order hold
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Figure 12.6: Discrete time equivalent model with
zero order hold

Combining the circuit on the previous slide with the
plant transfer function G(s), yields the equivalent
connection between input sequence, u(k4), and
sampled output y(kA) as shown below:

ffffffffffffffffffff

u(kA) 1« w’Tt)- Gro(5) Gols) y(t)
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We saw earlier that the transfer function of a discrete
time system, in Z-transform form is the Z-transform
of the output (the sequence {y[k]}) when the input,
ulk], IsaKronecker delta, with zero initial
conditions. We also have, from the previous slide,
that iIf u[k] = o.[k], then the input to the continuous
plant isa Dirac Delta, I.e. u(t) = Jt). If we denote
by He,(2) the transfer function from U,(2) 10 Y(2),
we then have the following result.

H,,(z) = Z [the sampled impulse response of Gpo(s)Go(s)]
= (1 — 2z~ 1) Z [the sampled step response of G, (s)]
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Example 12.10

Consider the d.c. servo motor problem used as
motivation for this chapter. The continuoustime

transfer function is
bo

Go(s) =
s(s+ agp)
Using the result on the previous slide we see that

(Z—l) {bo bo bo —5k}
H,.(2) = g SN e i
f(2) = =2 L) — 5+

_ (2=1) [ agbozA _ boz e bo
E a? e B e S P o
<b06LOA = boe_aOA 5 bo) e boaoAG_aoA 7 boe_aoA + bg

7 a3(z — 1)(z — e~08)
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This model 1s of the form:

y(k+1A)=a.y(kA )+aoy(k =14 )+ biu(kA )+ bou(k —1A)
Note that this is a second order transfer function with a
first order numerator.

The reader may care to check that this is consistent
with the input-output model which was stated without
proof in the introduction i.e.

H,, (2)= 2o

We have thus fulfilled one prc_)mise of showing where
this model comes from.
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Using Continuous State Space
Models

Next we show how a discrete model can be developed
when the plant is described by a continuous time state
space model

dolt) =4
S o Az (t) + Bu(t)

y(t) = Ca(t)
Then, using the solution formula (see Chapter 3) the
sampled state response over an interval A is given by

z((k +1)A) = e*2x(kA) + /A eAA=T)Bu(r)dr

Now using the fact that u(t+k4) isegual to u(kA) for
0<1<Awehave
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z((k+1)A) = A,z(kA) + B,u(kA)
where

eAA

Aq
A

B, = / eAMA-T) Bdr
0

Also the output is

y(kA) = C,x(kA) where C,=C
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Shift form

The discrete time state space model derived above
can be expressed compactly using the forward shift
operator, g, as

where ylk] = Cqzl[k]
— (AA)"
AqéeAA:kZ:O< k!)

>
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Delta Form

Alternatively, the discrete state space model can be
expressed in Deltaform as

5$(tk) = A(;:C(tk) —+ B5’U,(tk)
y(tk) A C(sfb(tk) —+ D(;u(tk)

where C5 =C, = C, Dy =D, =D and

AN
Agée I
A
B; £ OB
17 e AA  AZA2
Q—K/O (& dT:I 2' 3' “|"
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Some Comparisons of Shift and
Delta Forms

For the delta form we have

lim A5=A lim B5:B
For the shift form
Iim qul Iim quO

Indeed, this reconfirms one of the principal
advantages of the deltaform, namely that it
converges to the underlying continuous time model
as the sampling period approaches zero. Note that
thisis not true of the alternative snift operator form.
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Frequency Response of Sampled
Data Systems

We next evaluate the frequency response of alinear
discrete time system having transfer function H(2).
Consider a sine wave input given by

1 : w ; w
u(kA) = sin(wkA) = sin (27rkws) 57 (692”’“73 eSpe L e

Naet

where w, = ZA”.

Following the same procedure as in the continuous
time case (see Section 4.9) we see that the system
output response to the input is

y(kA) = a(w) sin(wWkA + ¢(w))

where
H,(e2%) = a(w)el ')
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The freguency response of a discrete time system
depends upon 6“2 and is thus periodic in w with
period 7Y,

The next dlideillustrates this fact by showing the
frequency response of
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Figure 12.7: Periodicity in the frequency response of
sampled data systems.

Frequency response of a sampled data system
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Another feature of particular interest isthat the
sampled data freguency response converges to its
continuous counterpart asA — 0 and hence much
iInsight can be obtained by simply looking at the
continuous version. Thisisexemplified below.

Example 12.11. Consider the two systems shown in
Figure 12.8 on the next page: Compare the
frequency response of both systems in the range

[0, w].
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Figure 12.8: Continuous and sampled data systems

u(t) a y(®)

System 1

U‘Q[k] ke e_SA
System 2 —/—> —
s
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The continuous time transfer function

H(aE ot
s+a
The continuous and discrete freguency responses
are:
: Y(jw
gy 8

gl
glét —@™a

7=l

_ Y
H q (ejaA ):U (zjaﬂj = Z{Gho (S)s%a}
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Note that for w<< w,and a << w,1.e. WA << 1 and
al << 1, then we can use afirst order Taylor’s series
approximation for the exponentials €22 and €42 in
the discrete case leading to

== 14 a/\ a

14+ jwA—-—14+aA Jw—+a ()

H,(jwA) ~

The next slide compares the two frequency responses
as afunction of input frequency for two different
values of A. Notethat for A small, the two frequency
responses are very close.
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Figure 12.9: Asymptotic behavior of a sampled data
transfer function
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Summary

0 Very few plants encountered by the control engineer are digital,
most are continuous. That is, the control signal applied to the
process, as well as the measurements received from the process,
are usually continuous time.

0 Modern control systems, however, are amost exclusively
Implemented on digital computers.

0 Compared to the historical analog controller implementation, the
digital computer provides
1 much greater ease of implementing complex algorithms,
1 convenient (graphical) man-machine interfaces,
o logging, trending and diagnostics of internal controller and

1 flexibility to implement filtering and other forms of signal processing
operations.
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0 Digital computers operate with sequences in time, rather
than continuous functions in time.
Therefore,

5 Input signalsto the digital controller-notably process
measurements - must be sampl ed;

o outputs from the digital controller-notably control signals - must be
interpolated from a digital sequence of values to a continuous
function in time.

0 Sampling (see next slide) is carried out by A/D (analog to
digital converters.
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w —am |-

continuous-time signal  Analog to digital converter sampled signal

Figure 12.10: The result of sampling

0 The converse, reconstructing a continuous time signal from
digital samples, iscarried out by D/A (digital to analog)
converters. There are different ways of interpolating
between the discrete samples, but the so called zero-order
hold (see next dlide) is by far the most common.
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L e -

XX
XXy X
> XXX

sampled signal Digital to analog converter reconstructed signal

Figure 12.11: The result of reconstruction

0 When sampling a continuous time signal,
5 an appropriate sampling rate must be chosen

o an anti-aliasing filter (low-pass) should be included to avoid
frequency folding.

0 Analysis of digital systems relies on discrete time versions
of the continuous operators.
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0 The chapter has introduced two discrete operators:
1 the shift operator, q, defined by ox[k]Ax[k +1]

x[ k+1]-x[k]

n the d-operator, 9, defined by ox[k]A %

0 Thus, 5:%‘1, or gq=aA+1.

0 Dueto this conversion possibility, the choice is largely
based on preference and experience. Comparisons are
outlined below.
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0 The shift operator, g,
5 Isthetraditional operator;
o Isthe operator many engineers feel more familiar with;
o Isused in the majority of the literature.

0 The o-operator, o, has the advantages of:

o emphasizing the link between continuous and discrete systems
(resembles a differential);

1 o-expressions converge to familiar continuous expressions as
A - 0, whichisintuitive;

o Isnumerically vastly superior at fast sampling rates when properly
Implemented.
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0 Analysis of digital systems relies on discrete time versions
of the continuous operators:

o the discrete version of the differential operator is difference
operator;

1 thediscrete version of the Laplace Transform is either the Z-
transform (associated with the shift operator) or the j~transform
(associated with the o-operator).

0 With the help of these operators,

o continuous time differential equation models can be converted to
discrete time difference equation models,

o continuous time transfer or state space models can be converted to

discrete time transfer or state space models in either the shift or o
operators.



