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Motivation

Up to  this point in the book, we have assumed that the
control systems we have studied operate in continuous
time and that the control law is implemented in
analogue fashion.  Certainly in the early days of
control, all control systems were implemented via
some form of analogue equipment.  Typically
controllers were implemented using one of the
following formats:-

◆ hydraulic
◆ pneumatic
◆ analogue electronic



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

However, in recent times, almost all analogue
controllers have been replaced by some form of
computer control.

This is a very natural move since control can be
conceived as the process of making computations based
on past observations of a system’s behaviour so as to
decide how one should change the manipulated
variables to cause the system to respond in a desirable
fashion.

The most natural way to make these computations is via
some form of computer.
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A huge array of control orientated computers are
available in the market place.
A typical configuration includes:

◆ some form of central processing unit (to make the necessary
computations)
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◆ analogue to digital converters (to read the analogue process
signals into the computer).
(We call this the process of SAMPLING)

◆ digital to analogue converters (to take the desired control
signals out of the computer and present them in a form
whereby they can be applied back onto the physical process).
(We call this the process of SIGNAL RECONSTRUCTION)
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Types of Control Orientated Computer

Depending upon the application, one could use many
different forms of control computer.  Typical control
orientated computers are:

DCS (Distributed Control System)  These are distributed
computer components aimed at controlling a large plant.

PLC (Programmable Logic Controller)  These are special
purpose control computers aimed at simple control tasks -
especially those having many on-off type functions.

PC (Personal Computer)  There is an increasing trend to simply
use standard PC’s for control.  They offer many advantages
including minimal cost, flexibility and familiarity to users.
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Embedded Controller.  In special purpose applications, it is
quite common to use special computer hardware to
execute the control algorithm.  Indeed, the reader will be
aware that many commonly used appliances (CD players,
automobiles, motorbikes, etc.) contain special
microprocessors which enable various control functions.
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Why Study Digital Control?

A simple (engineering) approach to digital control is
to sample quickly and then to make some reasonable
approximation to the derivatives of the digital data.
For example, we could approximate the derivative of
an analogue signal,  y(t),  as follows:

where  ∆ is the sampling period.
The remainder of the design might then proceed
exactly as for continuous time signals and systems
using the continuous model.
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Actually, the above strategy turns out to be quite good
and it is certainly very commonly used in practice.
However, there are some unexpected traps for the
unwary.  These traps have lead to negative experiences
for people naively trying to do digital control by
simply mimicking analogue methods.  Thus it is
important to know when such simple strategies make
sense and what can go wrong. We will illustrate by a
simple example below.
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D.C. Servo Motor Control

We consider the control of a d.c. servo system via a
computer.  This is a very simple example.  Yet we
will show that this simple example can (when it is
fully understood) actually illustrate almost an entire
course on control.
A photo of a typical d.c. servo system is shown on
the next slide.
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Photo of Servo Laboratory System
with Digital Control via a PC
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The set-up for digital control of this system is shown
schematically below:

input

Digital
controller

A/D

Plant
output

D/A

The objective is to cause the output shaft position,
y(t), to follow a given reference signal, y*(t).
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Modelling

Since the control computations will be done inside
the computer, it seems reasonable to first find a
model relating the sampled output, {y(k∆); k = 0, 1,
… } to the sampled input signals generated by the
computer, which we denote by {u(k∆), k = 0, 1, … }.
(Here ∆ is the sample period).
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We will see later in this chapter that the output at
time k∆ can be modelled as a linear function of past
outputs and past controls.  (We ask that the reader
accept this for the moment).

Thus the (discrete time) model for the servo takes the
form:

( ) ( ) ( ) ( ) ( ).111 0101 ∆−+∆+∆−+∆=∆+ kubkubkyakyaky
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A Prototype Control Law

Conceptually, we want                   to go to the desired
value  y*.  This suggests that we could simply set the
right hand side of the equation on the previous slide
equal to  y*.  Doing this we see that  u(k∆) becomes a
function of y(k∆)  (as well as                  and                  .
At first glance this looks reasonable but on reflection we
have left no time to make the necessary calculations.
Thus, it would be better if we could reorganize the
control law so that u(k∆) becomes a function of

     , … .  Actually this can be achieved by
changing the model slightly as we show on the next slide.
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Model Development
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Substituting the model into itself to yield:
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We see that                  takes the following form:

where                      etc.

( ) ( ) ( )
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Actually,  α1, α2, β1, β2, β3, can be estimated from the
physical system.  We will not go in to details here.
However, for the system shown earlier the values
turn out to be as follows for ∆ = 0.05 seconds:

α1 = 0.03554
 α2 = 0.03077

β1 = 1
β2 = -1.648
β3 = 0.6483
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A Modified Prototype Control Law

Now we want the output to go to the reference  y*.
Recall we have the model:

This suggests that all we need do is set                  equal
to the desired set-point                     and solve for u(k∆).
The answer is

( ) ( ) ( )
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Notice that the above control law expresses the
current control u(k∆) as a function of

◆ the reference,
◆ past output measurements,
◆ past control signals,

( ) ( ) ( ) ( ) ( ) ( )
1

3221 2211*
β

ββαα ∆−−∆−−∆−−∆−−∆+=∆ kukukykykyku

( )∆+1* ky
( ) ( )∆−∆− 2,1 kyky

( ) ( )∆−∆− 2,1 kuku



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

Also notice that 1 sampling interval exists between
the measurement of                    and the time needed
to apply  u(k∆);  i.e. we have specifically allowed
time for the computation of u(k∆) to be performed
after                   is measured!

( )∆−1ky
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Recap

All of this is very plausible so far.  We have obtained
a simple digital control law which causes
to go to the desired value                     in one step !

Of course, the real system evolves in continuous
time (readers may care to note this point for later
consideration).
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Simulation Results

To check the above idea, we run a computer
simulation.  The results are shown on the next slide.
Here the reference is a square wave.  Notice that, as
predicted, the output follows the reference with a
delay of just 2 samples.
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Simulation Results with
Sampling Period 0.05 seconds
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Experimental results

However, when we try this on a real system, the
results are extremely poor!  Indeed, the system
essentially goes unstable.
❖   Can the reader guess some of the causes for the
     difference between the ideal simulation results and
     the very poor real results?
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Causes of the Poor Response

It turns out that there are many reasons for the poor
response.  Some of these are:

1. Intersample issues
2. Input saturation
3. Noise
4. Timing jitter

The purpose of this chapter and the following two
chapters is to understand these issues.  To provide
motivation for the reader we will briefly examine
these issues for this simple servo example.
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1. Intersample Issues

If we look at the output response at a rate faster than
the control sampling rate then we see that the actual
response is as shown on the next slide.
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Simulation result showing full
continuous output response
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This is rather surprising!  However, if we think back
to the original question, we only asked that the
sampled output go to the desired reference.  Indeed it
has.  However, we said nothing about the
intersample response!
A full explanation of this phenomenon will be given
in Chapter 14.
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2. Input Saturation

Looking again at the simulations, we see that this
particular control law is calling for very large input
signals.  However, the D/A converter on the real
servo kit only operates on a range of ±10 volts.

We thus repeat the simulation but clamp the voltage
at ±10 volts.  The result is an unstable response.
Indeed, clamping at ±100 volts still gives very poor
results as shown on the next slide.
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Looking between the samples reveals even more
structure to the result shown above.  See the next
slide.
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The reader may recall that we studied windup and
input saturation in Chapter 11.  Maybe we should try
the ideas presented in Chapter 11 here.

We recall from Chapter 11 that the essential trick in
anti-windup schemes is to ensure that the states of the
control law are told that the input has saturated.  This
means that all we need do is to ensure that the
saturated past input signals are stored in the computer
to be used in subsequent control law calculations.
Making the test gives the result on the next slide.
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Experimental results revisited

Going back to the real servo kit and applying the
above idea with anti-windup protection at ±10 volts
gives the results on the next slide.
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We see that we now, at least, have achieved stable
operation.  However, the results are nowhere near as
good as those predicted by simulation.
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3. Noise

One further point that we have overlooked is that
causing  y(t)  to approach y* as quickly as possible
gives a very wide bandwidth controller.  However,
we saw in Chapter 8 that such a controller will
necessarily magnify noise.  Indeed, if we look at the
steady response of the system (see the next slide)
then we can see that noise is indeed causing
problems.
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4. Timing Jitter

Finally we realize that this particular real controller
has been implemented in a computer that does not
have a real-time operating system.  This means that
the true sampling rate actually varies around the
design value.  We call this timing jitter.  This can be
thought of as introducing modelling errors.  Yet we
are using a wideband controller.  Thus, we should
expect significant degradation in performance
relative to the idealized simulations.
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Finally, we make a much less demanding design and
try a simple digital PID controller on the real system.
The results are entirely satisfactory as can be seen on
the next slide.  Of course, the design bandwidth is
significantly less than was attempted with the
previous design.
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Hopefully the above example has motivated the
reader to say - “let’s study digital control”.
By the time you have studied the next three chapters
you will understand all of the features of the above
simple problem, e.g.

◆ how to build the model;
◆ what are the special features of the one-step-ahead

control law we have used; and
◆ why funny things can (and sometimes do) happen

between samples.
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The current chapter is principally concerned with
modelling issues, i.e. how to relate samples of the
output of a physical system to the sampled data
input.
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Specific topics to be covered are:

◆ Discrete-time signals
◆ Z-transforms and Delta transforms
◆ Sampling and reconstruction
◆ Aliasing and anti-aliasing filters
◆ Sampled-data control systems
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Sampling

The result of sampling a continuous time signal is
shown below:

continuous-time signal

x
x
x
xx xxxxxxx

x
x
x

x

sampled signal

A/D

Analog to digital converter

Figure 12.10:  The result of sampling



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

There will always be loss of information due to
sampling. However, the extent of this loss depends
on the sampling method and the associated
parameters. For example, assume that a sequence of
samples is taken of a signal f(t) every ∆ seconds,
then the sampling frequency needs to be large
enough in comparison with the maximum rate of
change of f(t).  Otherwise, high frequency
components will be mistakenly interpreted as low
frequencies in the samples sequence.
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Example 12.1

Consider the signal

We observe that if the sampling period  ∆  is chosen equal
to 0.1[s] then

from where it is evident that the high frequency
component has been shifted to a constant, i.e. the high
frequency component appears as a signal of low frequency
(here zero).  This phenomenon is known as aliasing.

f(t) = 3 cos 2πt+ cos
(
20πt+

π

3

)

f(k∆) = 3 cos(0.2kπ) + cos
(
2kπ +

π

3

)

= 3 cos(0.2kπ) + 0.5
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This effect is illustrated on the next slide.
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Figure 12.1:  Aliasing effect when using low sampling
 rate
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Conclusion:

To mitigate the effect of aliasing the sampling rate
must be high relative to the rate of change of the
signals of interest.  A typical rule of thumb is to
require that the sampling rate be 5 to 10 times the
bandwidth of the signals.
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Signal Reconstruction

The output of a digital controller is another sequence
of numbers {u[k]} which are the sample values of
the intended control signal.  These sample values
need to be converted back to continuous time
functions before they can be applied to the plant.
Usually, this is done by interpolating them into a
staircase function u(t) as illustrated in Figure 12.2.
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Figure 12.2: Staircase reconstruction
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Illustration of Signal Reconstruction

xx
x
x
xxxxxxxxx

x
x
x

D/A

Digital to analog convertersampled signal reconstructed signal

Figure 12.11:  The result of reconstruction
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Modelling

Given the process of signal reconstruction and
sampling, we see that the net result is that, inside the
computer, the system input and output simply appear
as sequences of numbers.

It therefore makes sense to build digital models that
relate a discrete time input sequence, {u(k)}, to a
sampled output sequence {y(k∆)}.
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Linear Discrete Time Models

A useful discrete time model of the type referred to
above is the linear version of the high order
difference equation model.  In the discrete case, this
model takes the form:

Note that we saw a special form of this model in
relation to the motivational servo example presented
earlier.

y[k + n] + an−1y[k + n − 1] + · · · + a0y[k]

= bn−1u[k + n − 1] + · · · + b0u[k]
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To simplify the way we write the model equations,
we will find it useful to have a simple notation to
represent a time-shifted output sample,
We introduce a special operator (the shift operator)
that allows us to write this very compactly.

.�
�
�

�
�
� ∆+mky
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The Shift Operator

Forward shift operator

In terms of this operator, the model given earlier
becomes:

For a discrete time system it is also possible to have
discrete state space models. In the shift domain these
models take the form:

q(f [k]) � f [k + 1]

qny[k] + an−1q
n−1y[k] + · · · + a0y[k] = bmqmu[k] + · · · + b0u[k]

qx[k] = Aqx[k] +Bqu[k]
y[k] = Cqx[k] +Dqu[k]
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Z-Transform

Analogously to the use of Laplace Transforms for
continuous time signals, we introduce the Z-transform
for discrete time signals.

Consider a sequence {y[k]; k = 0, 1, 2, …].  Then the
Z-transform pair associated with {y[k]} is given by

Z [y[k]] = Y (z) =
∞∑

k=0

z−ky[k]

Z−1 [Y (z)] = y[k] =
1
2πj

∮
zk−1Y (z)dz
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A table of Z-transforms of typical sequences is given
in Table 12.1 (see the next slide).

Also, a table of Z-transform properties is given in
Table 12.2 (see the slide after next).
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f [k] Z [f [k]] Region of convergence

1
z

z − 1 |z| > 1

δK [k] 1 |z| > 0
k

z

(z − 1)2 |z| > 1

k2 z(z − 1)
(z − 1)3 |z| > 1

ak z

z − a
|z| > |a|

kak az

(z − a)2
|z| > |a|

cos kθ
z(z − cos θ)

z2 − 2z cos θ + 1 |z| > 1

sin kθ
z sin θ

z2 − 2z cos θ + 1 |z| > 1

ak cos kθ
z(z − a cos θ)

z2 − 2az cos θ + a2
|z| > a

ak sin kθ
az sin θ)

z2 − 2az cos θ + a2
|z| > a

k cos kθ
z(z2 cos θ − 2z + cos θ)

z2 − 2z cos θ + 1 |z| > 1

µ[k]− µ[k − ko], ko ∈ N
1 + z + z2 + . . .+ zko−1

zko−1
|z| > 0

Table 12.1:  Z-transform table
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Table 12.2: Z-transform properties. Note that Fi(z) = Z[fi[k]], µ[k]
denotes, as usual, a unit step, y[∞] must be well 
defined and  the convolution property holds provided 
that f1[k] = f2[k] = 0 for all  k < 0.

f [k] Z [f [k]] Names
l∑

i=1

aifi[k]
l∑

i=1

aiFi(z) Partial fractions

f [k + 1] zF (z)− zf(0) Forward shift
k∑

l=0

f [l]
z

z − 1F (z) Summation

f [k − 1] z−1F (z) + f(−1) Backward shift
y[k − l]µ[k − l] z−lY (z) Unit step

kf [k] −z
dF (z)

dz
1
k
f [k]

∫ ∞

z

F (ζ)
ζ

dζ

lim
k→∞

y[k] lim
z→1

(z − 1)Y (z) Final value theorem

lim
k→0

y[k] lim
z→∞Y (z) Initial value theorem

k∑
l=0

f1[l]f2[k − l] F1(z)F2(z) Convolution

f1[k]f2[k]
1
2πj

∮
F1(ζ)F2

(
z

ζ

)
dζ

ζ
Complex convolution

(λ)kf1[k] F1

(
z
λ

)
Frequency scaling
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How do we use Z-transforms ?

We saw earlier that Laplace Transforms have a
remarkable property that they convert differential
equations into algebraic equations.

Z-transforms have a similar property for discrete
time models, namely they convert difference
equations (expressed in terms of the shift operator q)
into algebraic equations.

We illustrate this below for a discrete high-order
difference equation model:
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Discrete Transfer Functions
Taking Z-transforms on each side of the high order
difference equation model leads to

where  Yq(z), Uq(z)  are the Z-transform of the sequences
{y[k]} and {u[k]} respectively, and

Aq(z)Yq(z) = Bq(z)Uq(z) + fq(z, xo)

Aq(z) = zn + an−1z
n−1 + · · ·+ ao

Bq(z) = bmzm + bm−1z
m−1 + · · ·+ bo
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We then see that (ignoring the initial conditions) the
Z-transform of the output Y(z) is related to the Z-
transform of the input by  Y(z) = Gq(z)U(z) where

Gq(z) is called the discrete (shift form) transfer
function.

Gq(z)
�
=

Bq(z)
Aq(z)
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An interesting observation

We see from Table 12.1 that the Z-transform of a
unit pulse is 1.  Also, we have just seen that Z-
transform of the output of discrete linear systems
satisfies

Y(z) = Gq(z)U(z)

where  Gq(z) is the transfer function and U(z) the
input.

Hence, the transfer function is the Z-transform of the
output when the input is a Kronecker delta.
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Example:

Find the unit step response of a system with transfer
function given by

Solution:  The Z-transform of the step response,
y[k], is given by

The response is shown on the next slide.

Gq(z) =
0.5

z + 0.8

Yq(z) =
0.5

z + 0.5
Uq(z) =

0.5z
(z + 0.5)(z − 1)

Expanding in partial fractions (use MATLAB command residue) we obtain

Yq(z) =
z

3(z − 1) −
z

3(z + 0.5)
⇐⇒ y[k] =

1
3

(
1− (−0.5)k)

µ[k]
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Figure 12.3: Unit step response of a system 
exhibiting ringing response
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Note that the response contains the term (-0.5)k,
which corresponds to an oscillatory behavior (known
as ringing).  In discrete time this can occur (as in this
example) for a single negative real pole whereas, in
continuous time, a pair of complex conjugate poles
are necessary to produce this effect.
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Discrete Delta Domain Models

The shift operator (as described above) is used in the
vast majority of digital control and digital signal
processing work.  However, in some applications the
shift operator can lead to difficulties.  The reason for
these difficulties are explained below.
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Consider the first order continuous time equation

and the corresponding discretized shift operator
equation is of the form:

Expanding the differential explicitly as a limiting
operation, we obtain the following form of the
continuous time equation:

ρy(t) + y(t) =
dy(t)
dt

+ y(t) = u(t)

a2qy(tk) + a1y(tk) = b1u(tk)

lim
∆→0

(
y(t+ ∆) − y(t)

∆

)
+ y(t) = u(t)
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If we now compare the discrete model to the
approximate expanded form, namely

we then see that the fundamental difference between
continuous and discrete time is that the discrete
model describes absolute displacements (i.e. y(t+∆)
in terms of y(t), etc.) whereas the differential
equation describes the increment

�
�

�

�

�
�

�

�

∆
−∆+ )()(i.e. tyty

kk tttubtyatya −=∆=+∆+ +1112 where);()()(
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This fundamental difficulty is avoided by use of an
alternative operator;  namely the Delta operator:

For sampled signals, an important feature of this
operation is the observation that

i.e., the Delta operator acts as a derivative in the limit as
the sampling period →0.  Note, however, that no
approximations will be involved in employing the Delta
operator for finite sampling periods since we will derive

δ (f(k∆)) ,
f((k + 1)∆)− f(k∆)

∆

lim
∆→0

[δ{f(k∆)}] = ρ(f(t))
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exact model descriptions relevant to this operator at the
given sampling rate.

We next develop an alternative discrete transform (which
we call the Delta transform) which is the appropriate
transform to use with the Delta operator, i.e.

Time Domain Transfer Domain

q
δ

Z-transform
delta transform
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Discrete Delta Transform
We define the Discrete Delta Transform pair as:

The Discrete Delta Transform can be related to Z-
transform by noting that

where  Yq(z) = Z[(k∆)].  Conversely

D [y(k∆)]
�
= Yδ(γ) =

∞∑
k=0

(1 + γ∆)−ky(k∆)∆

D−1 [Yδ(γ)] = y(k∆) =
1

2πj

∮
(1 + γ∆)k−1Yδ(γ)dγ

Yδ(γ) = ∆Yq(z)
∣∣∣
z=∆γ+1

Yq(z) =
1
∆
Yδ(γ)

∣∣∣
γ= z−1

∆
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❖ The next slide shows a table of Delta transform pairs;
❖ The slide after next lists some Delta transform properties.
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Table 12.3: Delta Transform Table

f [k] (k ≥ 0) D [f [k]] Region of Convergence

1
1 + ∆γ

γ

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

1
∆
δK [k] 1 |γ| < ∞

µ[k] − µ[k − 1]
1
∆

|γ| < ∞

k
1 + ∆γ

∆γ2

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

k2 (1 + ∆γ)(2 + ∆γ)
∆2γ3

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

eα∆k α ∈ C
1 + ∆γ

γ − eα∆−1
∆

∣∣∣∣γ +
1
∆

∣∣∣∣ > eα∆

∆

keα∆k α ∈ C
(1 + ∆γ)eα∆

∆
(
γ − eα∆−1

∆

)2

∣∣∣∣γ +
1
∆

∣∣∣∣ > eα∆

∆

sin(ωo∆k)
(1 + ∆γ)ωosinc(ωo∆)

γ2 + ∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

where sinc(ωo∆) =
sin(ωo∆)
ωo∆

and φ(ωo,∆) =
2(1 − cos(ωo∆))

∆2

cos(ωo∆k)
(1 + ∆γ)(γ + 0.5∆φ(ωo,∆))
γ2 + ∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆
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Table 12.4: Delta Transform properties.  Note that Fi(γ) = D[fi[k]],
µ[k] denotes, as usual, a unit step,  f[∞] must be well
defined and the convolution property holds provided
that  f1[k] = f2[k] = 0 for all k < 0.

f [k] D [f [k]] Names
l∑

i=1

aifi[k]
l∑

i=1

aiFi(γ) Partial fractions

f1[k + 1] (∆γ + 1)(F1(γ) − f1[0]) Forward shift
f1[k + 1]− f1[k]

∆
γF1(γ)− (1 + γ∆)f1[0] Scaled difference

k−1∑
l=0

f [l]∆
1
γ
F (γ) Reimann sum

f [k − 1] (1 + γ∆)−1F (γ) + f [−1] Backward shift
f [k − l]µ[k − l] (1 + γ∆)−lF (γ)

kf [k] −1 + γ∆
∆

dF (γ)
dγ

1
k
f [k]

∫ ∞

γ

F (ζ)
1 + ζ∆

dζ

lim
k→∞

f [k] lim
γ→0

γF (γ) Final value theorem

lim
k→0

f [k] lim
γ→∞

γF (γ)
1 + γ∆

Initial value theorem
k−1∑
l=0

f1[l]f2[k − l]∆ F1(γ)F2(γ) Convolution

f1[k]f2[k]
1

2πj

∮
F1(ζ)F2

(
γ − ζ

1 + ζ∆

)
dζ

1 + ζ∆
Complex convolution

(1 + a∆)kf1[k] F1

(
γ − a

1 + a∆

)
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Why is the Delta Transform sometimes
better than the Z-Transform?

As can be seen from by comparing the Z-transform
given in Table 12.1 with those for the Laplace
Transform given in Table 4.1, expressions in Laplace
and Z-transform do not exhibit an obvious structural
equivalence.  Intuitively, we would expect such an
equivalence to exist when the discrete sequence is
obtained by sampling a continuous time signal.
We will show that this indeed happens if we use the
alternative delta operator.
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In particular, by comparing the entries in Table 12.3
(The Delta Transform) with those in Table 4.1 (The
Laplace Transform) we see that a key property of
Delta Transforms is that they converge to the
associated Laplace Transform as ∆→0, i.e.

We illustrate this property by a simple example:

lim
∆→0

Yδ(γ) = Y (s)
∣∣∣
s=γ
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Example 12.9

Say that  {y[k]} arises from sampling, at period ∆, a
continuous time exponential  eβt.  Then

and, from Table 12.3

In particular, note that as ∆→0,                      which
is the Laplace transform of eβt.
Hence we confirm the close connections between the
Delta and Laplace Transforms.

y[k] = eβk∆

Yδ(γ) =
1 + γ∆

γ −
[

eβ∆−1
∆

]

βγ
γδ −

→ 1)(Y
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How do we use Delta Transforms?

We saw earlier in this chapter that Z-transforms
could be used to convert discrete time models
expressed in terms of the shift operator into algebraic
equations. Similarly, the Delta Transform can be
used to convert difference equations (expressed in
terms of the Delta operator) into algebraic equations.
The Delta Transform also provides a smooth
transition from discrete to continuous time as the
sampling rate increases.
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We next examine several properties of discrete time
models, beginning with the issue of stability.
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Discrete System Stability
Relationship to Poles
We have seen that the response of a discrete system
(in the shift operator) to an input  U(z) has the form

where  α1 … αn are the poles of the system.
We then know, via a partial fraction expansion, that
Y(z) can be written as

Y (z) = Gq(z)U(z) +
fq(z, xo)

(z − α1)(z − α2) · · · (z − αn)

Y (z) =
n∑

j=1

βjz

z − αj
+ terms depending on U(z)
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where, for simplicity, we have assumed non repeated
poles.

The corresponding time response is

Stability requires that [αj]k → 0, which is the case if
[αj] < 1.

Hence stability requires the poles to have magnitude
less than 1, i.e. to lie inside a unit circle centered at
the origin.

y[k] = βj [αj ]
k + terms depending on the input
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Delta Domain Stability

We have seen that the delta domain is simply a shifted
and scaled version of the Z-Domain, i.e.
                                        It follows that the Delta
Domain stability boundary is simply a shifted and
scaled version of the Z-domain stability boundary.  In
particular, the delta domain stability boundary is a
circle of radius 1/∆ centered on - 1/∆ in the γ domain.
Note again the close connection between the
continuous s-domain and discrete δ-domain, since the
δ-stability region approaches the s-stability region
(OLHP) as ∆ → 0.

.1and1 +∆==
∆
− γγ ZZ
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Discrete Models for Sampled
Continuous Systems

So far in this chapter, we have assumed that the
model is already given in discrete form.  However,
often discrete models arise by sampling the output of
a continuous time system.  We thus next examine
how to obtain discrete time models which link the
sampled output of a continuous time system to a
sampled input.

We are thus interested in modelling a continuous
system operating under computer control.
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A typical way of making this interconnection is
shown on the next slide.

The analogue to digital converter (A/D in the figure)
implements the process of sampling (at some fixed
period ∆).  The digital to analogue converter (D/A in
the figure) interpolates the discrete control action
into a function suitable for application to the plant
input.
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Figure 12.4: Digital control of a continuous time 
plant

input

Digital
controller

A/D

Plant
output

D/A
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Details of how the plant input is
reconstructed

When a zero order hold is used to reconstruct  u(t),
then

Note that this is the staircase signal shown earlier in
Figure 12.2.  Discrete time models typically relate
the sampled signal  y[k]  to the sampled input  u[k].
Also a digital controller usually evaluates  u[k]
based on  y[j] and r[j], where {r(k∆)} is the reference
sequence and  j ≤ k.

u(t) = u[k] for k∆ ≤ t < (k + 1)∆



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

Using Continuous Transfer
Function Models

We observe that the generation of the staircase signal
u(t),  from the sequence  {u(k)} can be modeled as in
Figure 12.5.

us(t) 1 − e−s∆

s∆

u[k] m(t)

ZOH

Figure 12.5:  Zero order hold
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Figure 12.6: Discrete time equivalent model with 
zero order hold

Gh0(s)
∆

Go(s)
y(t)us(t)u(k∆)

y(k∆)

∆

Combining the circuit on the previous slide with the 
plant transfer function G0(s), yields the equivalent 
connection between input sequence, u(k∆), and 
sampled output y(k∆) as shown below:
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We saw earlier that the transfer function of a discrete
time system, in Z-transform form is the Z-transform
of the output (the sequence  {y[k]}) when the input,
u[k], is a Kronecker delta, with zero initial
conditions. We also have, from the previous slide,
that if u[k] = δK[k], then the input to the continuous
plant is a Dirac Delta, i.e. us(t) = δ(t).  If we denote
by Heq(z) the transfer function from Uq(z) to Yq(z),
we then have the following result.

Hoq(z) = Z [the sampled impulse response of Gh0(s)Go(s)]

= (1− z−1)Z [the sampled step response of Go(s)]
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Example 12.10

Consider the d.c. servo motor problem used as
motivation for this chapter.  The continuous time
transfer function is

Using the result on the previous slide we see that
Go(s) =

b0
s(s+ a0)

Hoq(z) =
(z − 1)

z
Z

{
b0
a0

(k∆) − b0
a2
0

+
b0
a2
0

e−δk

}

=
(z − 1)
a2
0

{
a0b0z∆
(z − 1)2

− b0z

z − 1
+

b0
z − e−a0∆

}

=

(
b0a0∆ + b0e

−a0∆ − b0
)
z − b0a0∆e−a0∆ − b0e

−a0∆ + b0

a2
0(z − 1)(z − e−a0∆)
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This model is of the form:

Note that this is a second order transfer function with a
first order numerator.
The reader may care to check that this is consistent
with the input-output model which was stated without
proof in the introduction i.e.

We have thus fulfilled one promise of showing where
this model comes from.

012
01)(

aZaZ

bzb
0q zH

−−

+=

( ) ( ) ( ) ( ) ( )∆−+∆+∆−+∆=∆+ 111 2101 kubkubkyakyaky
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Using Continuous State Space
Models

Next we show how a discrete model can be developed
when the plant is described by a continuous time state
space model

Then, using the solution formula (see Chapter 3) the
sampled state response over an interval ∆ is given by

Now using the fact that  u(τ+k∆) is equal to u(k∆) for
0 ≤ τ < ∆ we have

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t)

x((k + 1)∆) = eA∆x(k∆) +
∫ ∆

0

eA(∆−τ)Bu(τ )dτ
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where

Also the output is

x((k + 1)∆) = Aqx(k∆) + Bqu(k∆)

Aq = eA∆

Bq =
∫ ∆

0

eA(∆−τ)Bdτ

y(k∆) = Cqx(k∆) where Cq = C
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Shift form

The discrete time state space model derived above
can be expressed compactly using the forward shift
operator, q, as

where

qx[k] = Aqx[k] + Bqu[k]
y[k] = Cqx[k]

Aq
�
= eA∆ =

∞∑
k=0

(A∆)k

k!

Bq
�
=

∫ ∆

0

eA(∆−τ)Bdτ = A−1
[
eA∆ − I

]
if A is nonsingular

Cq
�
= C

Dq
�
= D
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Delta Form

δx(tk) = Aδx(tk) + Bδu(tk)
y(tk) = Cδx(tk) + Dδu(tk)

where Cδ = Cq = C, Dδ = Dq = D and

Aδ
�
=

eA∆ − I

∆

Bδ
�
= ΩB

Ω =
1
∆

∫ ∆

0

eAτdτ = I +
A∆
2!

+
A2∆2

3!
+ . . .

Alternatively, the discrete state space model can be
expressed in Delta form as
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Some Comparisons of Shift and
Delta Forms

For the delta form we have

For the shift form

Indeed, this reconfirms one of the principal
advantages of the delta form, namely that it
converges to the underlying continuous time model
as the sampling period approaches zero.  Note that
this is not true of the alternative shift operator form.

lim
∆→0

Aδ = A lim
∆→0

Bδ = B

lim
∆→0

Aq = I lim
∆→0

Bq = 0



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

Frequency Response of Sampled
Data Systems
We next evaluate the frequency response of a linear
discrete time system having transfer function Hq(z).
Consider a sine wave input given by

where

Following the same procedure as in the continuous
time case (see Section 4.9) we see that the system
output response to the input is

where

u(k∆) = sin(ωk∆) = sin
(
2πk

ω

ωs

)
=

1
2j

(
ej2πk ω

ωs − e−j2πk ω
ωs

)

.2
∆

= πωs

y(k∆) = α(ω) sin(ωk∆ + φ(ω))

Hq(ejω∆) = α(ω)ejφ(ω)
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The frequency response of a discrete time system
depends upon ejω∆ and is thus periodic in  ω  with
period 2π/∆.
The next slide illustrates this fact by showing the
frequency response of

Hq[z] =
0.3

z − 0.7
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Figure 12.7: Periodicity in the frequency response of
sampled data systems.
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Another feature of particular interest is that the
sampled data frequency response converges to its
continuous counterpart as ∆ → 0 and hence much
insight can be obtained by simply looking at the
continuous version.  This is exemplified below.

Example 12.11:  Consider the two systems shown in
Figure 12.8 on the next page:  Compare the
frequency response of both systems in the range
[0, ωs].



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

Figure 12.8: Continuous and sampled data systems

∆ ∆

yq [k]

y(t)

uq[k]

u(t) a

s + a

a

s + a

System 1

System 2
1 − e−s∆

s



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

The continuous time transfer function

The continuous and discrete frequency responses
are:

as
asH
+

=)(

aj
a
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==
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Note that for ω << ωs and a << ωs i.e. ω∆ << 1 and
a∆ << 1, then we can use a first order Taylor’s series
approximation for the exponentials e-a∆ and ejω∆ in
the discrete case leading to

The next slide compares the two frequency responses
as a function of input frequency for two different
values of ∆.  Note that for ∆ small, the two frequency
responses are very close.

Hq(jω∆) ≈ 1 − 1 + a∆
1 + jω∆ − 1 + a∆

=
a

jω + a
= H(jω)
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Figure 12.9: Asymptotic behavior of a sampled data
transfer function
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Summary
❖ Very few plants encountered by the control engineer are digital,

most are continuous.  That is, the control signal applied to the
process, as well as the measurements received from the process,
are usually continuous time.

❖ Modern control systems, however, are almost exclusively
implemented on digital computers.

❖ Compared to the historical analog controller implementation, the
digital computer provides

◆ much greater ease of implementing complex algorithms,
◆ convenient (graphical) man-machine interfaces,
◆ logging, trending and diagnostics of internal controller and
◆ flexibility to implement filtering and other forms of signal processing

operations.
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❖ Digital computers operate with sequences in time, rather
than continuous functions in time.
Therefore,

◆ input signals to the digital controller-notably process
measurements - must be sampled;

◆ outputs from the digital controller-notably control signals - must be
interpolated from a digital sequence of values to a continuous
function in time.

❖ Sampling (see next slide) is carried out by A/D (analog to
digital converters.
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❖ The converse, reconstructing a continuous time signal from
digital samples, is carried out by D/A (digital to analog)
converters.  There are different ways of interpolating
between the discrete samples, but the so called zero-order
hold (see next slide) is by far the most common.

continuous-time signal

x
x
x
xx xxxxxxx

x
x
x

x

sampled signal

A/D

Analog to digital converter

Figure 12.10:  The result of sampling
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❖ When sampling a continuous time signal,
◆ an appropriate sampling rate must be chosen
◆ an anti-aliasing filter (low-pass) should be included to avoid

frequency folding.

❖ Analysis of digital systems relies on discrete time versions
of the continuous operators.

xx
x
x
xxxxxxxxx

x
x
x

D/A

Digital to analog convertersampled signal reconstructed signal

Figure 12.11:  The result of reconstruction
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❖ The chapter has introduced two discrete operators:
◆ the shift operator,  q, defined by

◆ the δ-operator, δ, defined by

❖ Thus,               or

❖ Due to this conversion possibility, the choice is largely
based on preference and experience.  Comparisons are
outlined below.

]1[][ +∆ kxkqx

∆
−+∆ ][]1[][ kxkxkxδ

,1
∆
−= qδ .1+∆=δq
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❖ The shift operator, q,
◆ is the traditional operator;
◆ is the operator many engineers feel more familiar with;
◆ is used in the majority of the literature.

❖ The δ-operator, δ, has the advantages of:
◆ emphasizing the link between continuous and discrete systems

(resembles a differential);
◆ δ-expressions converge to familiar continuous expressions as

∆ → 0, which is intuitive;
◆ is numerically vastly superior at fast sampling rates when properly

implemented.
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❖ Analysis of digital systems relies on discrete time versions
of the continuous operators:

◆ the discrete version of the differential operator is difference
operator;

◆ the discrete version of the Laplace Transform is either the Z-
transform (associated with the shift operator) or the γ-transform
(associated with the δ-operator).

❖ With the help of these operators,
◆ continuous time differential equation models can be converted to

discrete time difference equation models;
◆ continuous time transfer or state space models can be converted to

discrete time transfer or state space models in either the shift or δ
operators.


