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Chapter 12 was concerned with building models for
systems acting under digital control.

We next turn to the question of control itself.



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Topics to be covered include:
❖ why one cannot simply treat digital control as if it were

exactly the same as continuous control, and

❖ how to carry out designs for digital control systems so that
the at-sample response is exactly treated.
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Having the controller implemented in digital form
introduces several constraints into the problem:
(a) the controller sees the output response only at the sample

points,

(b) an anti-aliasing filter will usually be needed prior to the
output sampling process to avoid folding of high 
frequency signals (such as noise) onto lower frequencies
where they will be misinterpreted; and

(c) the continuous plant input bears a simple relationship to
the (sampled) digital controller output, e.g. via a zero 
order hold device.
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A key idea is that if one is only interested in the at-
sample response, these samples can be described by
discrete time models in either the shift or delta
operator.  For example, consider the sampled data
control loop shown below

Cq(z)
Rq(z)

Gh0(s) Go(s)
Y (s)

−+

Digital controller Hold device Plant

sampler
F (s)

Anti-aliasing filter

Yf (s)

Eq(z)

Figure 13.1:  Sampled data control loop
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If we focus only on the sampled response then it is
straightforward to derive an equivalent discrete model
for the at-sample response of the hold-plant-anti-
aliasing filter combination.  This was discussed in
Chapter 12.
We use the transfer function form, and recall the
following forms for the discrete time model:
(a)  With anti-aliasing filter  F

(b) Without anti-aliasing filter

{ })()()(),(][ 0000 ofresponseimpulsesampled sGsGsFZzGFG hqh

{ })()(),(][ 0000 ofresponseimpulsesampled sGsGZzGG hqh
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Control Ideas

Many of the continuous time control ideas studied in
earlier chapters carry over directly to the discrete
time case.  Examples are given below.
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The discrete sensitivity function is

The discrete complementary sensitivity function is

These can be used and understood in essentially the
same way as they are used in the continuous time
case.

Soq(z) =
Eq(z)
Rq(z)

=
1(

1 + Cq(z) [FGoGh0]q (z)
)

Toq(z) =
Yfq(z)
Rq(z)

=
Cq(z) [FGoGh0]q (z)(

1 + Cq(z) [FGoGh0]q (z)
)
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Are there special features of
digital control models?

Many ideas carry directly over to the discrete case.
For example, one can easily do discrete pole
assignment.  Of course, one needs to remember that
the discrete stability domain is different from the
continuous stability domain.  However, this simply
means that the desirable region for closed loop poles
is different in the discrete case.

We are led to ask if there are any real conceptual
differences between continuous and discrete.
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Zeros of Sampled Data Systems
We have seen earlier that open loop zeros of a system
have a profound impact on achievable closed loop
performance.  The importance of an understanding of
the zeros in discrete time models is therefore not
surprising.  It turns out that there exist some subtle
issues here as we now investigate.

If we use shift operator models, then it is difficult to see
the connection between continuous and discrete time
models.  However, if we use the equivalent delta
domain description, then it is clear that discrete transfer
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Functions converge to the underlying continuous
time descriptions.  In particular, the relationship
between continuous and discrete (delta domain)
poles is as follows (See Chapter 12):

where            denote the discrete (delta domain)
poles and continuous time poles respectively.

ii pp ,δ

pδ
i =

epi∆ − 1
∆

; i = 1, . . . n
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The relationship between continuous and discrete zeros
is more complex.  Perhaps surprisingly, all discrete
time systems turn out to have relative degree 1
irrespective of the relative degree of the original
continuous system.

Hence, if the continuous system has n poles and m(< n)
zeros then the corresponding discrete system will have
n poles and (n-1) zeros. Thus, we have  n-m+1 extra
discrete zeros.  We therefore (somewhat artificially)
divide the discrete zeros into two sets.



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

1. System zeros:                   Having the property

where       are the discrete time zeros (expressed
in the delta domain for convenience) and  zi  are
the zeros of the underlying continuous time
system.

δδ
mzz ,...,1

δ
iz

lim
∆→0

zδ
i = zi i = 1, . . . , m



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

2. Sampling zeros:                     Having the property

Of course, if m = n - 1 in the continuous time
system, then there are no sampling zeros.  Also,
note that as the sampling zeros tend to infinity for
∆→0, they then contribute to the continuous
relative degree.  This shows the consistency
between the two types of model.
We illustrate by a simple example.

δδ
1,...,1 −+ nzzm

lim
∆→0

∣∣zδ
i

∣∣ =∞ i = m+ 1, . . . , n − 1
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Example 13.1

Consider the continuous time servo system of
Example 3.4, having continuous transfer function

where n = 2, m = 0.  Then we anticipate that
discretizing would result in one sampling zero,
which we verify as follows.

Go(s) =
1

s(s+ 1)
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With a sampling period of 0.1 seconds, the exact
shift domain digital model is

where  K = 0.0048,      = -0.967 and  α0 = 0.905.
The corresponding exact delta domain digital model
is

where  K′ = 0.0048,      = -19.67 and α0 = -0.9516.

qz0

qz0

Goq(z) = K
z − zq

o

(z − 1)(z − αo)

Gδ(γ) =
K ′(γ − zδ

o)
γ(γ − α′

o)
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We see that (in the delta form), the discrete system
has a pole at γ=0  and a pole at  γ=-0.9516.  These
are consistent with the continuous time poles at  s=0
and s=-1.

Note, however, that the continuous system has
relative degree 2, whereas the discrete system has
relative degree 1 and a sampling zero at -19.67 (in
the delta formulation).

The next slide shows a plot of the sampling zero as a
function of sampling period.
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Figure 13.2: Location of sampling zero with different
sampling periods.  Example 13.1
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In the control of discrete time systems special care
needs to be taken with the sampling zeros.  For
example, these zeros can be non-minimum phase
even if the original continuous system is minimum
phase.  Consider, for instance, the minimum phase,
continuous time system with transfer function given
by

Go(s) =
s+ 4
(s+ 1)3
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For this system, the shift domain zeros of [G0Gh0]q(z)
for two different sampling periods are

∆ = 2[s] � zeros at -0.6082 and -0.0281
∆ = 0.5[s] � zeros at -1.0966 and 0.1286

Note that ∆ = 0.5[s], the pulse transfer function has a
zero outside the stability region.

Thus, one needs to be particularly careful of sampling
zeros when designing a digital control system.
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Is a Dedicated Digital Theory Really
Necessary?

We could well ask if it is necessary to have a separate theory
of digital control or could one simply map over a continuous
design to the discrete case.  Three possible design options
are:
1) Design the controller in continuous time, discretize the result 

for implementation and ensure that the sampling constraints do 
not significantly affect the final performance.

2) Work in discrete time by doing an exact analysis of the at-sample
response and ensure that the intersample response is not too 
surprising, or

3) carry out an exact design by optimizing the continuous response
with respect to the (constrained) digital controller.

We will analyze and discuss these 3 possibilities below.
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1. Approximate Continuous Designs

Given a continuous controller, C(s), we mention three
methods drawn from the digital signal processing
literature for determining an equivalent digital controller.
1.1 Simply take a continuous time controller expressed in 

terms of the Laplace variable, s and then replace every 
occurrence of  s  by the corresponding delta domain 
operator γ.  This leads to the following digital control law:

where C(s) is the transfer function of the continuous time
controller and where           is the resultant transfer 
function of the discrete time controller in delta form.

)(1 γC

C1(γ) = C(s)
∣∣
s=γ
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1.2 Convert the controller to a zero order hold discrete 
equivalent.  This is called a step invariant transformation.
This leads to

where C(s), Gh0(s) and              are the transfer functions
of the continuous time controller, zero order hold and 
resultant discrete time controller respectively.

)(2 γC

C2(γ) = D [sampled impulse response of {C(s)Gh0(s)}]
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1.3 We could use a more sophisticated mapping from  s  to  γ.
For example, we could carry out the following 
transformation, commonly called a bilinear transformation
with pre-warping.  We first let

The discrete controller is then defined by

s =
αγ

∆
2 γ + 1

⇐⇒ γ =
s

α − ∆
2 s

C3(γ) = C(s)|s= αγ
∆
2 γ+1
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We next choose  α  so as to match the frequency responses
of the two controllers at some desired frequency, say ω*.
For example, one might choose ω* as the frequency at 
which the continuous time sensitivity function has its 
maximum value.

We illustrate the above 3 ideas below for a simple
system.
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Example 13.2

A plant has a nominal model given by

Synthesize a continuous time PID controller such
that the dominant closed loop poles are the roots of
the polynomial  s2 + 3s + 4.

Go(s) =
1

(s − 1)2
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The closed loop characteristic polynomial Acl(s) is
chosen as

where the factor  s2 + 10s + 25 has been added to
ensure that the degree of  Acl(s) is 4, which is the
minimum degree required for an arbitrarily chosen
Acl(s).

Acl(s) = (s2 + 3s+ 4)(s2 + 10s+ 25)
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On solving the pole assignment equation we obtain
P(s) = 88s2 + 100s + 100 and                       This
leads to the following PID controller

We next study the 3 procedures suggested earlier for
obtaining an equivalent digital control law.

.15)( += ssL

C(s) =
88s2 + 100s+ 100

s(s+ 15)
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1.1 Method 1 - Here to obtain a discrete time PID controller
we simply substitute  s  by  γ.  In this case, this yields

or, in Z transform form

where we have assumed a sampling period  ∆ = 0.1.

Cδ(γ) =
88γ2 + 100γ + 100

γ(γ + 15)

Cq(z) =
88z2 − 166z + 79
(z − 1)(z + 0.5)
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The continuous and the discrete time loops are
simulated with SIMULINK for a unit step reference
at t = 1 and a unit step input disturbance at t = 10.
The difference of the plant outputs is shown in
Figure 13.3.
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Figure 13.3: Difference in plant outputs due to 
discretization of the controller 
(sampling period =0.1[s])
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For the above example, we see that method 1.1 (i.e.
simply replace  s  by  γ) has led to an entirely
satisfactory digital control law.  However, this isn’t
always the case as we show by the next example.
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Example 13.3

The system nominal transfer function is given by

and the continuous time controller is

Replace the controller by a digital controller with
∆ = 0.157[s] preceded by a sampler and followed by a
ZOH using the three approximations outlined earlier.

Go(s) =
10

s(s+ 1)

C(s) =
0.416s+ 1
0.139s+ 1
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Three methods for directly mapping a
continuous controller to discrete time

1.1 Replacing  s  by γ in  C(s) we get

1.2 The ZOH equivalent of  C(s)  is

1.3 For the bilinear mapping with pre-warping, we
choose ω* = 5.48.  This gives  α = 0.9375 and
the resulting controller becomes

C1(γ) =
0.416γ + 1
0.139γ + 1

C2(γ) =
0.694γ + 1
0.232γ + 1

C3(γ) = C(s)
∣∣
s= αγ

∆
2 γ+1

=
0.4685γ + 1
0.2088γ + 1
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Simulation Results

The above 3 digital controllers were simulated and
their performance checked against the performance
achieved with the original continuous controller.
The results are shown on the next slide.
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Figure 13.4: Performance of different control designs:  
continuous time (yc(t)), simple substitution (y1(t)),
step invariance (y2(t)) and bilinear transformation
(y3(t)).
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We see from the figure that none of the
approximations exactly reproduces the closed-loop
response obtained with the continuous time
controller.  Actually for this example, we see that
simple substitution (Method (1.1)) appears to give
the best result and that there is not much to be gained
by fancy methods here.  However, it would be
dangerous to draw general conclusions from this one
example.
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2.  At-Sample Digital Design

The next option we explore is that of doing an exact
digital control system design for the sampled
response.

We recall that the sampled response is exactly
described by appropriate discrete-time-models
(expressed in either the shift or delta operators).
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Time Domain Design

Any algebraic technique (such as pole assignment)
has an immediate digital counterpart.  Essentially all
that is needed is to work with  z  (or γ)  instead of the
Laplace variable, s, and to keep in mind the different
region for closed loop stability.

We illustrate below by several special digital control
design methods.



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Minimal Prototype

The basic idea in this control design strategy is to
achieve zero error at the sample points in the
minimum number of sampling periods, for step
references and step output disturbances (with zero
initial conditions).  This implies that the
complementary sensitivity must be of the form

To(z) =
p(z)
zl
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Case 1:
The plant sampled transfer function, G0q(z) is
assumed to have all its poles and zeros strictly inside
the stability region.  Then the controller can cancel
the numerator and the denominator of G0q(z) and the
pole assignment equation becomes

where
Lq(z)Aoq(z) + Pq(z)Boq(z) = Aclq(s)

Lq(z) = (z − 1)Boq(z)Lq(z)
Pq(z) = KoAoq(z)

Aclq(s) = zn−mBoq(z)Aoq(z)
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Simplifying, we obtain

This equation can now be solved for K0 by evaluating
the expression at z = 1.  This leads to K0 = 1, and to a
controller and a complementary sensitivity given by

We illustrate this case with an example.

(z − 1)Lq(z) +Ko = zn−m

Cq(z) = [Goq(z)]−1 1
zn−m − 1

; and To(z) =
1

zn−m
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Example 13.4

Consider a continuous time plant with transfer
function

Synthesize a minimum prototype controller with
sampling period ∆ = 0.1[s].

Go(s) =
50

(s+ 2)(s+ 5)
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The sampled transfer function is given by

Notice that G0q(z) is stable and minimum phase, with
m = 2 and n = 3.  The resulting minimal prototype
control law is:

The next slide shows a simulation of the closed loop
system.

Goq(z) =
0.0398(z + 0.7919)

(z − 0.8187)(z − 0.6065)

Cq(z) =
25.124(z − 0.8187)(z − 0.6065)

(z − 1)(z + 0.7919)
and Toq(z) =

1
z
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Figure 13.5: Plant output for a unit step reference
and a minimal prototype digital control.
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We see that the sampled response settles in exactly
one sample period.  This is as expected, since
T0q(z) = 1/z.  However, Figure 13.5 illustrates one of
the weaknesses of minimal prototype control:
perfect tracking is only guaranteed at the sampling
instants!

(The reader is asked to review the motivating
example described in the slides for Chapter 12.  Note
that exactly the same problem of poor intersample
response arose with the earlier example).
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Case 2:
The plant is assumed to be minimum phase and
stable, except for a pole at z = 1, i.e.
A0q(z) = (z-1)Ā0q(z).  In this case, the minimal
prototype idea does not require that the controller
have a pole at z = 1.  Thus, equations (13.6.6) to
(13.6.8) become

Lq(z) = Boq(z)Lq(z)

Pq(z) = KoAoq(z)

Aclq(z) = zn−mBoq(z)Aoq(z)
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Cq(z) = [Goq(z)]−1 1
zn−m − 1

=
Aoq(z)
Boq(z)

z − 1
zn−m − 1

=
Aoq(z)

Boq(z)(zn−m−1 + zn−m−2 + zn−m−3 + . . .+ z + 1)

Toq(z) =
1

zn−m

The resulting control is as follows.
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Example 13.5

Consider the servo system of Example 3.4.  Recall
that its transfer function is given by

Synthesize a minimal prototype controller with
sampling period ∆ = 0.1[s].

Go(s) =
1

s(s+ 1)

Goq(z) = 0.0048
z + 0.967

(z − 1)(z − 0.905)

967.0
905.033.208)( +

−= z
z

q zC

zq zT 1
0 )( =



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Figure 13.6: Plant output for a unit step reference
and a minimal prototype digital control.
Plant with integration.
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Note that the above results are essentially identical to
the simulation results presented for the motivational
example given in the slides for Chapter 12.
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Minimum Time Dead-Beat Control

The basic idea in dead-beat control design is similar
to that in the minimal prototype case:  to achieve
zero error at the sample points in a finite number of
sampling periods for step references and step output
disturbances (and with zero initial conditions).
However, in this case we add the requirement that,
for this sort of reference and disturbance, the
controller output  u[k]  also reach its steady state
value in the same number of intervals.
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The design involves cancelling the open loop poles
in the controller.  Thus, the system is (for the
moment) assumed to be stable. We see that the result
is achieved by the following control law

The resulting closed loop complementary sensitivity
function is

)1(
1;

)(
)(

)(
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Example

Consider the servo system

Synthesize a minimum time dead-beat control with
sampling period ∆ = 0.1[s].

The next slide shows the simulated response.

Go(s) =
1

s(s+ 1)

4910.0
47.9549.105

)(0

)(0)( +
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z
zqBnz
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q zC

α

α
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Figure 13.7: Minimum time dead-beat control for a
second order plant
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From the above result we see that the intersample
problem has been solved by the dead-beat control
law.

Note, however, that this is still a very wide-
bandwidth control law and thus the other problems
discussed in the slides for Chapter 12 (i.e. noise,
input saturation and timing jitter issues) will still be
a problem for the dead-beat controller.
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The controller presented above has been derived for
stable plants or plants with at most one pole at the
origin. Thus cancellation of A0q(z) was allowed.
However, the dead-beat philosophy can also be
applied to unstable plants, provided that dead-beat is
attained in more than  n  sampling periods.  To do
this we simply use pole assignment and place all of
the closed loop poles at the origin.
Indeed, dead-beat control is then seen to be simply a
special case of general pole-assignment.  We study
the general case below.
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Digital Control Design by Pole
Assignment

Minimal prototype and dead-beat approaches are
particular applications of pole assignment.  Indeed,
all can be derived by solving the usual pole
assignment equation:

for particular values of

The general pole assignment problem is illustrated
below.

)()()()()( qAqPqBqLqA cl=+

).(qAcl
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Example

Consider a continuous time plant having a nominal
model given by

Design a digital controller,  Cq(z), which achieves a
loop bandwidth of approximately 3[rad/s].  The loop
must also yield zero steady state error for constant
references.

Go(s) =
1

(s+ 1)(s+ 2)
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We first use the MATLAB program  c2del.m to obtain
the discrete transfer function in delta form representing
the combination of the continuous time plant and the
zero order hold mechanism.  This yields

We next choose the closed loop polynomial  Aclδ(γ) to
be equal to

D {Gho(s)Go(s)} =
0.0453γ + 0.863

γ2 + 2.764γ + 1.725

Aclδ(γ) = (γ + 2.5)2(γ + 3)(γ + 4)
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The resulting pole assignment equation has the form

(γ2 + 2.764γ + 1.725)γLδ(γ) + (0.0453γ + 0.863)Pδ(γ) = (γ + 2.5)2(γ + 3)(γ + 4)
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The MATLAB program  paq.m is then used to solve
this equation, leading to  Cδ(γ), which is finally
transformed into  Cq(z).  The delta and shift
controllers are given by

Finally, the closed loop response is as shown on the
next slide.

Cδ(γ) =
29.1γ2 + 100.0γ + 87.0

γ2 + 7.9γ
=

Pδ(γ)
γLδ(γ)

and

Cq(z) =
29.1z2 − 48.3z + 20.0
(z − 1)(z − 0.21)
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Figure 13.8: Performance of digital control loop
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Internal Model Principle for
Digital Control

Most of the ideas presented in previous chapters
carry over to digital systems.  One simply needs to
take account of issues such as the different stability
domains and model types.

We illustrate below by the Internal Model Principle
which was discussed for Continuous Systems in
Chapter 10.  In the discrete case, one can choose the
internal model to achieve some very interesting
results.  An example of this is given by repetitive
control which we discuss below.
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Repetitive Control

 An interesting special case of the Internal Model
Principle in digital control occurs with periodic
signals.  It is readily seen that any periodic signal of
period  Np  samples can be modeled by a discrete time
model (in shift operator form) using a generating
polynomial given by

Γdq(q) =
(
qNp − 1

)
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Hence, using the internal model principle, any Np
period reference signal can be exactly tracked (at
least at the sample points) by including  Γdq(q) in the
denominator of the controller.  This idea is the basis
of a technique known as repetitive control aimed at
causing a system to learn how to carry out a
repetitive (periodic) task.

We illustrate by a simple example.
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Example 13.10:

Consider a continuous time plant with nominal
transfer function  G0(s) given by

Assume that this plant has to be digitally controlled
with sampling period ∆ = 0.2[s] in such a say that the
plant output tracks a periodic reference,  r[k], given
by

Synthesize the digital control which achieves zero
steady state at-sample errors.

Go(s) =
2

(s+ 1)(s+ 2)

r[k] =
∞∑

i=0

rT [k − 10i]⇐⇒ Rq(z) = RTq(z)
z10

z10 − 1
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We observe that the reference generating polynomial
qr(z), is given by  z10 - 1.  Thus the IMP leads to the
following controller structure

We then apply pole assignment with the closed loop
polynomial chosen as  Aclq(z) = z12(z - 0.2).  The
solution of the Diophantine equation yields

Cq(z) =
Pq(z)
Lq(z)

=
Pq(z)

Lq(z)Γqr(z)

Pq(z) =13.0z11 + 11.8z10 − 24.0z9 + 19.7z8 − 16.1z7 + 13.2z6 −
− 10.8z5 + 8.8z4 − 7.2z3 + 36.4z2 − 48.8z + 17.6

Lq(z) = (z10 − 1)(z + 0.86)
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Simulating the system with a period 12 input signal
leads to the results shown on the next slide.
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Figure 13.9: Repetitive control
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Notice that, after an initial transient, the output tracks
the desired periodic reference exactly at the sample
points.  Unfortunately, we notice that tracking is only
guaranteed at the sample points for this form of control
law.



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Robustness of Repetitive Controllers
Repetitive control is a highly attractive idea since it allows
any periodic disturbance to be rejected or any periodic
input to be tracked (at the sample points).  However, there
are costs associated with use of this control law.  For
example, we have already observed that intersample issues
can arise.  Another issue is robustness as discussed below.

Perfect tracking in steady state, for reference with high
frequency harmonics may compromise the robustness of
the nominal design.  This can be appreciated by
introducing a 0.02 [s] unmodelled time delay in the
control loop designed in Example 13.10.  For this case, the
loop behavior is depicted in Figure 13.10.
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Figure 13.10: Repetitive control loop in the presence
  of an unmodelled time delay
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Notice that the inclusion of the small delay has led to
closed loop instability.
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This behaviour can be readily understood.  In
particular, perfect tracking requires  T0  to be  1  at all
frequencies of interest.  However, we know from
Theorem 5.3 that robust stability usually requires that
|T0| be reduced at high frequencies.  This can be
achieved in several ways.  For example, one could
redefine the internal model to include only the
frequency components up to some maximum frequency
determined by robustness issues, i.e. we could use

Γdq(q) = (q − 1)
Nmax∏
i=1

(
q2 − 2 cos

(
i2π
Np

)
q + 1

)
; Nmax ≤ Np − 1

2
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Summary
❖ There are a number of ways of designing digital control

systems:
◆ design in continuous time and discretize the controller prior to

implementation;
◆ model the process by a digital model and carry out the design in

discrete time.

❖ Continuous time design which is discretized for
implementation:

◆ Continuous time signals and models are utilized for the design;
◆ Prior to implementation, the controller is rep0laced by an

equivalent discrete time version;
◆ Equivalent means to simply map  s  to  δ (where δ is the delta

operator);
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◆ Caution must be exercised since the analysis was carried out in
continuous time and the expected results are therefore based on the
assumption that the sampling rate is high enough to mask sampling
effects;

◆ If the sampling period is chosen carefully, in particular with
respect to the open and closed loop dynamics, then the results
should be acceptable.

❖ Discrete design based on a discretized process model:
◆ First the model of the continuous process is discretized;
◆ Then, based on the discrete process, a discrete controller is designed and

implemented;
◆ Caution must be exercised with so called intersample behavior:  the

analysis is based entirely on the behavior as observed at discrete points in
time, but the process has a continuous behavior also between sampling
instances;
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◆ Problems can be avoided by refraining from designing solutions
which appear feasible in a discrete time analysis, but are known to
be unachievable in a continuous time analysis (such as removing
non-minimum phase zeros from the closed loop!).

❖ The following rules of thumb will help avoid intersample
problems if a purely digital design is carried out:

◆ Sample 10 times the desired closed loop bandwidth;
◆ Use simple anti-aliasing filters to avoid excessive phase shift;
◆ Never try to cancel or otherwise compensate for discrete sampling zeros;
◆ always check the intersample response.


