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Motivation

In this chapter we will study Hybrid Control.  By
this terminology we mean the combination of a
digital control law with a continuous-time system.
We will be particularly interested in how the
continuous response differs from that seen at the
sampling points.

We recall the motivational example presented in the
slides for Chapter 12.

These are repeated below for completeness.
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D.C. Servo Motor Control

We consider the control of a d.c. servo system via a
computer.  This is a very simple example.  Yet we
will show that this simple example can (when it is
fully understood) actually illustrate almost an entire
course on control.
A photo of a typical d.c. servo system is shown on
the next slide.
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Photo of Servo Laboratory System
with Digital Control via a PC
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The set-up for digital control of this system is shown
schematically below:

input

Digital
controller

A/D

Plant
output

D/A

The objective is to cause the output shaft position,
y(t), to follow a given reference signal, y*(t).
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Modelling

Since the control computations will be done inside
the computer, it seems reasonable to first find a
model relating the sampled output, {y(k∆); k = 0, 1,
… } to the sampled input signals generated by the
computer, which we denote by {u(k∆), k = 0, 1, … }.
(Here ∆ is the sample period).
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We saw in Chapter 12 that the output at time k∆ can
be modelled as a linear function of past outputs and
past controls.

Thus the (discrete time) model for the servo takes the
form:

( ) ( ) ( ) ( ) ( ).111 0101 ∆−+∆+∆−+∆=∆+ kubkubkyakyaky
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A Prototype Control Law

Conceptually, we want                   to go to the desired
value  y*.  This suggests that we could simply set the
right hand side of the equation on the previous slide
equal to  y*.  Doing this we see that  u(k∆) becomes a
function of y(k∆)  (as well as                  and                  .
At first glance this looks reasonable but on reflection we
have left no time to make the necessary calculations.
Thus, it would be better if we could reorganize the
control law so that u(k∆) becomes a function of

     , … .  Actually this can be achieved by
changing the model slightly as we show on the next slide.

�
�
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�
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Substituting the model into itself to yield:

Model Development
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We see that                  takes the following form:

where                      etc.

( ) ( ) ( )
( ) ( ) ( )∆−+∆−+∆+
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Actually,  α1, α2, β1, β2, β3, can be estimated from the
physical system.  We will not go in to details here.
However, for the system shown earlier the values
turn out to be as follows for ∆ = 0.05 seconds:

α1 = 0.03554
 α2 = 0.03077

β1 = 1
β2 = -1.648
β3 = 0.6483
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A Modified Prototype Control Law

Now we want the output to go to the reference  y*.
Recall we have the model:

This suggests that all we need do is set                  equal
to the desired set-point                     and solve for u(k∆).
The answer is

( ) ( ) ( )
( ) ( ) ( )∆−+∆−+∆+
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Notice that the above control law expresses the
current control u(k∆) as a function of

◆ the reference,
◆ past output measurements,
◆ past control signals,

( ) ( ) ( ) ( ) ( ) ( )
1

3221 2211*
β

ββαα ∆−−∆−−∆−−∆−−∆+=∆ kukukykykyku

( )∆+1* ky
( ) ( )∆−∆− 2,1 kyky

( ) ( )∆−∆− 2,1 kuku
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Also notice that 1 sampling interval exists between
the measurement of                    and the time needed
to apply  u(k∆);  i.e. we have specifically allowed
time for the computation of u(k∆) to be performed
after                   is measured!

( )∆−1ky
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Recap

All of this is very plausible so far.  We have obtained
a simple digital control law which causes
to go to the desired value                     in one step !

Of course, the real system evolves in continuous
time (readers may care to note this point for later
consideration).
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Simulation Results

To check the above idea, we run a computer
simulation.  The results are shown on the next slide.
Here the reference is a square wave.  Notice that, as
predicted, the output follows the reference with a
delay of just 2 samples.
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Simulation Results with
Sampling Period 0.05 seconds
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Intersample Issues

However, we recall from Chapter 12, that if we look
at the output response at a rate faster than the control
sampling rate then we see that the actual response is
as shown on the next slide.
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Simulation result showing full
continuous output response
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This result was rather surprising when we saw it for
the first time in Chapter 12.  However, we argued
earlier that we only asked that the sampled output go
to the desired reference.  Indeed it has.  However, we
said nothing about the intersample response!
As promised in chapters 12 and 13, a full
explanation of this phenomenon will be given in the
current chapter.
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We saw in the example above (and several others
described in Chapter 13), that the continuous
response could contain nasty surprises if certain
digital controllers were implemented on
continuous systems.  The purpose of this chapter
is to analyze this situation and to explain:

❖ why the continuous response can appear very different
from that predicted by the at-sample response

❖ how to avoid these difficulties in digital control.
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Models for Hybrid Control Systems

A hybrid control loop containing both continuous
and discrete time elements is shown in Figure 14.1.
We denote the discrete equivalent transfer function
of the combination {zero order hold + Continuous
Plant + Filter} as [FG0Gh0]q.  We have

[FGoGh0 ]q = Z {sampled impulse response of F (s)Go(s)Gh0(s)}
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Figure 14.1:  Sampled data control loop.  Block form

+−

Gh0(s)

u(t) Go(s) y(t)

F (s)

yf (t)

∆

r[k]e[k]Cq(z)u[k]

yfq[k]

Sampling period

Pre-sampling
filter

Continuous outputContinuous time
plant

Discrete
controller

Continuous input

Zero-order
hold
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Model Development

We associate a fictitious staircase function, ŷf(t) with
the sequence  {yf[k]} where

where µ(t-τ) is a unit step function starting at τ - see
next slide .  We also note that, due to the zero order
hold, u(t) is already a staircase function, i.e.

ŷf (t) =
∞∑

k=0

yf [k] (µ(t − k∆) − µ(t − (k + 1)∆))

u(t) = û(t) =
∞∑

k=0

u[k] (µ(t − k∆) − µ(t − (k + 1)∆))
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Figure 14.2: Connections between  yf(t), yf[k] and
ŷf(t) for yf(t) = sin(2πt), ∆=0.1

��
��
��
��

yf (t)

yf [k]

ŷf (t)
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The Laplace Transform of û(t) can be related to the Z-
transform of  {u[k]} as follows:

Û(s) = L{û(t)} =
∫ ∞

0

e−stû(t)dt

=
∫ ∞

0

e−st
∞∑

k=0

u[k] (µ(t − k∆) − µ(t − (k + 1)∆)) dt
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Interchanging the order of summation and integration,
we have

where Uq(s) is the Z-transform of {u[k]}.

U(s) = Û(s) =
∞∑

k=0

u[k]
(

e−k∆s − e−(k+1)∆s

s

)

=
∞∑

k=0

u[k]e−k∆s

[
1 − e−∆s

s

]

= Uq

(
e∆s

)
Gho(s)
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We know from standard discrete analysis (see
Chapter 13) that Yfq(z) is related to Uq(z) and the
sampled reference input Rq(z) via standard discrete
transfer functions, i.e.

Multiplying both sides by Gh0(s) and setting z=es∆

gives

Uq(z) = Cq(z) [Rq(z) − Yfq(z)]

[
Gho(s)Uq(es∆)

]
= −Cq(es∆)Gho(s)Yfq(es∆)

+ C(es∆)Gho(s)Rq(es∆)
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Using the earlier expressions for Û(s) we obtain

Similarly we can see that

Hence for analysis purposes, we can redraw the loop
in Figure 14.1 as on the next slide.

Û(s) = −Cq(es∆)Ŷf (s) + Cq(es∆)Gho(s)Rq(es∆)

Ŷf (s) = [FGoGh0]q (es∆)Û(s)
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Figure 14.3: Transfer function form of a sampled
data control loop

Cq

Go
Y

Ŷf

−

+

U = Û
Gh0

Rq

[FGoGh0]q
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From the previous slide, we see that the Laplace
transform of the continuous output of the hybrid loop
is given by

Y (s) =
[

Cq(es∆)Go(s)Gh0(s)
1 + Cq(es∆)[FGoGh0]q(es∆)

]
Rq(es∆)
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Note that, even when the reference input is a pure
sinusoid, the continuous time output will not, in
general, be sinusoidal.  This is because                is a
periodic function and hence it follows that Y(jω) will
have components at

We next use the above insights to analyze the
continuous output response resulting from the hybrid
control loop.

( )0ωj
q eR

{ }.,...1,0,1...,;2
0 −=+= ∆ kkπωω
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Analysis of Intersample Behavior

The starting point for analyzing intersample behavior
is the set of results given above for the continuous
time output of a hybrid loop.  In particular, recall
that

Yf (s) =
Cq(es∆)F (s)Go(s)Gh0(s)

1 + Cq(es∆) [FGoGh0]q (es∆)
Rq(es∆)
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Also, we recall that the sampled output response is
given by

where  T0q(z) is the shift domain complementary
sensitivity, i.e.

Also, the staircase approximation to the sampled
output is given by

Yfq(es∆) = Toq(es∆)Rq(es∆)

Toq(z) =
Yfq(z)
Rq(z)

=
Cq(z) [FGoGh0]q (z)(

1 + Cq(z) [FGoGh0]q (z)
)

Ŷf (s) = Gh0(s)Yfq(es∆)
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The ratio of the continuous time output response to
the staircase form of the sampled output response is
given by

For simplicity, in the sequel, we will ignore the anti-
aliasing filter  F(s).

Yf (s)
Ŷf (s)

=
F (s)Go(s)

[FGoGh0]q (es∆)

Comparison of Continuous Response
with Stair-Case Version
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From the above expression one then immediately sees
that the ratio of the continuous time output response to
the staircase form of the sampled output response
depends on the ratio

This expression gives us a way of predicting the nature
of the continuous time response based on the discrete
time response.
We illustrate below by reconsidering the servo
example.  We recall this example below.

Θ(s) =
Go(s)

[GoGh0]q (es∆)
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Example 13.5
We recall the servo system of Chapter 13.  The continuous
time transfer function for this system is given by

In Chapter 13, we synthesized a minimal prototype
controller with sampling period ∆ = 0.1[s]. The results
were

We also recall that the sampled and continuous output
responses were as shown on the next slide.

Go(s) =
1

s(s + 1)

Goq(z) = 0.0048
z + 0.967

(z − 1)(z − 0.905)

967.0
905.033.208)( +

−= z
z

q zC

zq zT 1
0 )( =
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Figure 13.6: Plant output for a unit step reference
and a minimal prototype digital control.
Plant with integration.
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Note that the above results are essentially identical to
the simulation results presented for the motivational
example given earlier.
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Example 14.1

The magnitude of the ratio Θ(jω) for the above
design is shown in Figure 14.4 on the next slide.  We
see from this figure that the ratio is  1  at low
frequencies but at                       there is a ratio of,
approximately 23:1 between the frequency content
of the continuous time response and that of the
staircase form of the sampled output.  This explains
the very substantial intersample response associated
with this example.

]/[ srad∆= πω



Chapter 14  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Figure 14.4: Frequency response of Θ(jω), ∆ = 0.1
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Discussion of the Results
We recall that this design canceled the sampling zero
and led to T0q(z) = z-1 which is an all-pass transfer
function.  Hence a sampled sine wave input in the
reference leads to a sampled sine wave output of the
same magnitude.  However, Figure 14.4 predicts that the
corresponding continuous output will have 23 times
more amplitude for a sinusoidal frequency
The reason for this peak is easily seen.  In particular, the
minimal prototype cancels the sampling zero in the
discrete system. However, this sampling zero is near

.  Hence, it follows that the continuous time
output must have significant energy at

]./[ srad∆= πω

]./[ srad∆= πω
]/[ srad∆= πω
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We see that the basic cause of the intersample
problem in the above example is that T(ejω∆) is all-
pass.  Hence, the discrete frequency response has
magnitude 1 at all frequencies.  However, inspection
of Figure 14.4 indicates that, for this example, there
will be substantial magnification of the continuous
response in the vicinity of the folding frequency.

The remedy would appear to be to use a design in
which |T(ejω∆)| is reduced near the folding frequency.
This observation is confirmed below.
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We repeat the servo design example but instead of
the Minimal Prototype Controller (which cancelled
the sampling zeros in the discrete model), we will
use the Minimum Time Dead Beat Controller.  We
recall from Chapter 13, that this control law does not
cancel the sampling zeros but instead leads to the
following closed loop transfer function

nz
zB

zT
)(

)( 0α
=
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Minimum Time Dead-beat Design

Thus, for the servo system, the minimum time dead-
beat design leads to the following discrete time
complementary sensitivity function:

The magnitude of the frequency response of this
complementary sensitivity is shown in Figure 14.5
on the next slide.

Toq(z) =
Boq(z)

Boq(1)z2
=

0.5083z + 0.4917
z2
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Figure 14.5 Frequency response of the complementary
sensitivity for a minimum time dead-beat
design
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We see that, in this case, the discrete time gain drops
dramatically at                        and hence, although
Figure 14.4 still applies with respect to  Θ(jω), there is
now little discrete time response at                  to yield
significant intersample ripple.

We observe that this design makes no attempt to
compensate for the sampling zero, and hence there are
no unpleasant differences between the sampled
response and the full continuous time response.

This is borne out in the simulated response which is
repeated below from Chapter 13.

]/[ srad∆= πω

]/[ srad∆
π
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Figure 13.7: Minimum time dead-beat control for a
second order plant
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Summary
❖ Hybrid analysis allows one to mix continuous and discrete

time systems properly.

❖ Hybrid analysis should always be utilized when design
specifications are particularly stringent and one is trying to
push the limits of the fundamentally achievable.

❖ The ratio of the magnitude of the continuous time
frequency content at frequency ω the to frequency content
of the staircase form of the sampled output is

[ ] ( )∆=Θ s
qh eGG
sG

s
00

0 )(
)(
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❖ The above formula allows one to explain apparent
differences between the sampled and continuous response
of a digital control system.

❖ Sampling zeros typically cause                            to fall in
the vicinity of           , i.e. |Θ(jω)| increases at these
frequencies.

❖ It is therefore usually necessary to ensure that the discrete
complementary sensitivity has been reduced significantly
below 1 by the time the folding frequency,    , is reached.

∆= πω
[ ] ( )∆ωj

qh eGG 00

∆
π
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❖ This is often interpreted by saying that the closed loop
bandwidth should be 20% or less, of the folding frequency.

❖ In particular, it is never a good idea to carry out a discrete
design which either implicitly or explicitly cancels
sampling zeros since this will inevitably lead to significant
intersample ripple.


