Chapter 16

Control Design Based on
Optimization
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Thus far, we have seen that design constraints arise from
a number of different sources.

[]

[]

structural plant properties, such as NMP zeros or unstable
poles;

disturbances - their frequency content, point of injection,
and measurability;

architectural properties and the resulting algebraic laws of
trade-off; and

Integral constraints and the resulting integral laws of trade-off.
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The subtlety as well as complexity of the emergent
trade-off web, into which the designer needs to ease
a solution, motivates interest in what is known as
criterion-based control design or optimal control
theory: the am here isto capture the control
objective in amathematical criterion and solve it for
the controller that (depending on the formulation)
maximizes or minimizesit.
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Three questions arise:

1. Isoptimization of the criterion mathematically
feasible?

2. How good isthe resulting controller?

3. Canthe constraint of the trade-off web be
circumvented by optimization?
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Optimal Q Synthesis

In this chapter, we will combine theideaof Q
synthesis with a quadratic optimization strategy to
formulate the design problem.

This approach is facilitated by the fact, already
observed, that the nominal sensitivity functions are
affine functions of Q(9).
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Assume that atarget function Hy(s) is chosen for the
complementary sensitivity Ty(s). We have seenin
Chapter 15 that, iIf we are given some stabilizing
controller C(s) = P9/, ), then all stabilizing controllers

can be expressed as
P(s) Ao (8)
o) = EG) T Quls) g
L(s) 0 (3)BO(S)
E(s) 77 E(s)

the nominal complementary sensitivity function is then
given by

To(s) = Hi(s) + Qu(s)V(s)
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where H,(s) and V(s) are stable transfer functions of
the form

~ E(s)F(s)

We seethat T, Islinear in the design variable Q,.
We will use a quadratic optimization criterion to
design Q,. Thedesign problem isformally stated on
the next dlide.
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Quadratic Optimal Synthesis

Let S denotethe set of all real rational stable
transfer functions; then the quadratic optimal
synthesis problem can be stated as follows:

Problem (Quadratic optimal synthesis problem).
Find Q) (s)[1S such that

o o ) B 2 . B B 2
Q“<S)_arng(1;)n€3HHo T0H2_arng(1;)n€SHH0 Hy QUVH2
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The criterion on the previous dide uses the quadratic
norm, also called the H,-norm, of afunction X(s)
defined as

1
2

X1, = |5 [ XG)X (el
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To solve this problem, we first need a preliminary
result that is an extension of Pythagoras' theorem.

Lemma16.1: Let S,00 S bethe set of all real
strictly proper stable rational functions, and let S,” be
the set of all real strictly proper rational functions that
are analytical for L1{s}<0. Furthermore assume that
X(s) O and X (s) O0S,. Then

155+ Xully = 126, + [1Xull;
Proof. See the book.
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To use the above result, we will need to split a
general function X(s) into a stable part X(s) and an
unstable part X (s). We can do thisvia a partial-
fraction expansion. The stable poles and their
residues constitute the stable part.



Chapter 16 Goodwin, Graebe, Salgado ©, Prentice Hall 2000

We note that the cost function of interest here has the
general form

Qu(s) =arg min _[[W(s) = Quis)V(s)l];
where W(s) = H(s) - Hy(S), Hy(S) Isthe target
complementary sensitivity, and H,(s) and V(s) are as
below:
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Solution to the Quadratic Synthesis
Problem

Lemma 16.2: Provided that V(s) has no zeros on the
Imaginary axis, then

arg min W (s) = Qu(s)V(s)[|; = (Vn(5)) ! [Vals) " W (s)],

where
V(s) = Vin(s5)Va(s)

such that V., (s) is afactor with poles and zerosin the
open LHP and V(s) is an all-pass factor with unity
gain, and where [ X] denotes the stable part of X.

Proof: Essentially uses Lemma 16.1 - see the book.
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The solution will be proper only either if V has
relative degree zero or if both V hasrelative degree
one and W has relative degree of at |east one.
However, improper solutions can readily be turned
INto approximate proper solutions by adding an
appropriate number of fast polesto Q° (s).
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Returning to the problem posed earlier, we see that
Lemma 16.2 provided an immediate solution, by
setting
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The above procedure can be modified to include a

weighting function Q(jw). Inthisframework, the
cost function is now given by

|, — T
No additional difficulty arises, because it is enough

to smply redefine V(s) and W(s) to convert the
problem into the form

Q:(s) = arg min _[[W(s) =~ Qus)V(5)]
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It is also possible to restrict the solution space to
satisfy additional design specifications. For
example, forcing an integration is achieved by
parameterizing Q(S) as Q(s) = sQ(s) + [Go(0)] 7' Qu(s)

and introducing aweighting function Q(s) = /..
(Ho(O) = 1isalsorequired). Thisdoesnot alter the
affine nature of T4(s) on the unknown function.
Hence, the synthesis procedure devel oped above can
be applied, provided that we first redefine the
function, V(s) and W(s).
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Example 16.1: Unstable Plant

Consider a plant with nominal model

2

Gols) = o5 4 2)

Assume that the target function for Ty(s) isgiven by

9
s24+4s54+9

H,(s) =
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We first choose the observer polynomial

E(s) = (st4)(s+10) and the controller polynomial
F(s) =s?+4s+09.

We then solve the pole-assignment equation
Ay(S)L(s) + By(S)P(s) = E(s)F(s) to obtain the
prestabilizing control law expressed in terms of P(S)
and L(s). The resultant polynomials are

P(s) = 115s + 270; L(s) = s* 4+ 175+ 90
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Now consider any controller from the class of
stabilizing control laws as parameterized in

-

The quadratic cost function isthen asin

Quls) =arg _min _[[W(s) = Qu(s)V(5)]S
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B,(s)P(s)  9s* —104s — 180

Wis) = Hols) = B0 Fls) = Bls)F(s)
- By(s)As(s) Cls—1][2(s+2)(s+1)
V) = B r(s — Vnls) = L+ 1] [ E(s)F(5) ]
Consequently

1 ~ (1Y 55 4 158s% + 18s — 540
VoW = (5 ) PR
The optimal Q,(s) Isthen obtained

Qi(s) = (Vin()) " [(Va(9) "' W(s)]s = (114) S +(i5fsl);; 1+8§>_ =
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We observethat Q{ (S) isimproper. However, we
can approximate it by a suboptimal (but proper)
transfer function, Q('s), by adding one fast pole to
Q. (5):

~ 1
Qls) = Qu(9)

where TK1
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Example 16.2: Nonminimum-phase Plant

Consider a plant with nominal model

—3s + 18

Cols) = G606+ 3)

It isrequired to synthesize, by using H,
optimization, a one-d.o.f. control loop having the
target function

16

H,(s) =
()= 5 7 16

and to provide exact model inversion at w= 0.
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The appropriate cost function is defined as

w |~

J(Q) = ||(Ho(s) = (sQ(s) + [Go(0)]1)Go(s)0s)| where s) =

Then the cost function takes the form

J(Q) =|w-qV|;
where

—s+6 3 35% + 13s + 102
W(s) =
(s?2 + 55+ 16)(s? + 9s + 16)
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We first note that
—s+6 3

Vals) = S5 Vmls) = 7

The optimal Q (<) can then be obtained by using

Qu(s) = (Viu(s)) " [(Va(s)) W (s)]s

0°(s) 0.1301s2 + 0.82115s + 4.6260
S p—
s2 +5s+ 16

from this Q9(s) can be obtained as Q° (s) =sQ ? (s) +1.
One fast pole has to be added to make this function
proper.
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Robust Control Design with
Confidence Bounds

We next show briefly how optimization methods can
be used to change a nominal controller so that the
resultant performance is robust against model errors.

For the sake of argument we will use statistical
confidence bounds - although other types of
modelling error can also be used.
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Statistical Confidence Bounds

We have argued in Chapter 3 that no model can give
an exact description of areal process.

Our starting point will be to assume the existence of
statistical confidence bounds on the modeling error.

In particular, we assume that we are given a nominal
frequency response, G(j w), together with a statistical
description of the associated errors of the form

G(jw) = Go(jw) + Ge(jw)
where G(j o) Isthe true (but unknown) freguency

response and G (j w), as usual, represents the additive
modeling error.
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We assumethat G, possesses the following
probabilistic properties:
E{Ge(jw)} =0
E{Ge(jw)Ge(—jw)} = a(jw)a(—jw) = 6*(w)
a(s) is the stable, minimum-phase spectral factor.
Also, & i1sthe given measure of the modeling error.

The function a would normally be obtained from
some kind of identification procedure.
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Robust Control Design

Based on the nominal model G,(j ), we assume that
adesigniscarried out that |eads to acceptable
nominal performance. Thisdesign will typically
account for the usual control-design issues such as
nonminimum-phase behavior, the available input
range, and unstable poles. Let us say that this has
been achieved with anominal controller C, and that
the corresponding nominal sensitivity functionis S,.
Of course, the value §, will not be achieved in
practice, because of the variability of the achieved
sensitivity, S from S,.
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L et us assume, to begin, that the open-loop systemis
stable. We can thus use the ssimple form of the
parameterization of all stabilizing controllersto
express C, and §, in terms of a stable parameter Q,,.

Qo(s)
1 T GO<S)QO(S)

SO(S) =1- GO(S)QO(S)

Co(s) =
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The achieved sensitivity, S;, when the nominal
controller C, is applied to the true plant is given by

So(s)

1) = 130, (s)

where G, Is the additive model error.
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Our proposal for robust design now isto adjust the
controller so that the distance between the resulting
achieved sengitivity, S, and § isminimized. If we
change Q, to Q and hence C, to C, then the achieved
sensitivity changesto

_ 1— GO(S)Q(S)
1+ Gc(5)Q(s)

SQ(S)
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$2(5) = Su(5) = T g o — (1~ Gals)Qu(s)
Observe that S; denotes, the sensitivity achieved
when the plant is G, and the controller is
parameterized by Q, and §, denotes the sensitivity
achieved when the plant Is G, and the controller is
parameterized by Q,.
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Pictorially

G.- Random Variable
describing uncertainty

Design Criterion

J=E[|S; - Spf°dw
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Frequency Weighted Errors

Unfortunately, (S, - §) iIsanonlinear function of Q
and G-
In place of minimizing some measure of the
sensitivity error, we instead consider a weighted
version with W, = 1+G Q. Thus, consider
W2(s)(S2(s) — So(s)) = (1= Go(5)Q(s)) — (1 = Go(5)Qo(5)) (1 + Ge(5)Q(5))
= ~Go(5)Q(5) = So(5)Qo(5)Ge(s) — So(5)Q(5)Ge(5).

where Q(s)=Q(s)—-Q, (s) isthe desired adjustment
1IN Q,(s) to account for G (S).
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The procedure that we now propose for choosing Q
Isto find the value that minimizes

7= wa(s - sIE= [ T (W) (Sa(jw) — So(jew)) 2} dw

N /_OO Go(jw) 2| Q(jw)|* + |S6(jw)Qo(jw) + So(jw)Q(jw)|? & (w)dw
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Thisloss function has intuitive appeal. Thefirst term
on the right-hand side represents the bias error. It can
be seen that thisterm is zeroif Q=0 (i.e., weleave
the controller unaltered). The second term represents
thevariance error. Thistermiszeroif Q=-Q, -1.e.
If we choose open-loop control. These observations
suggest that there are two extreme cases. For @ =0
(no model uncertainty), we leave the controller
unatered; as @ - « (large model uncertainty), we
choose open-loop control, which clearly is robust for
the case of an open-loop stable plant.
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Intuitive Interpretation (Stable Case)

1=Lled ¢ ferdEled

TUncertainty
Bias Term Variance Term
Duetousing Q # Q, =0 as G, =0

in nominal case

Hence: BiadVariance Trade-Off
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The robust design is described In:

Lemma 16.4:. Suppose that

(1) G,isstrictly proper with no zeros on the imaginary axis
and

(i) E{G ()G (-]w)} has aspectral factorization.

Then a(s) a(-9)S,(S)F(-9) + Gy(s)Gy(-S) has a spectral
factor, which welabel H, and the optimal Q isgiven

by
Q" (s) = arg min |[W3(S2 — So)|l2
Q(s)eS
1

= _H(s) x stable part of a
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Proof: UsesLemma 16.2 - see the book.
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Thevalueof Q foundin Lemma 16.4 gives an
optimal trade-off between the bias error and the
variance term.
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A final check on robust stability (which is not
automatically guaranteed by the algorithm) requires

us to check that |G (j w)||Q(jw) <1 for al wand al

likely valuesof G (j ). A procedure for doing thisis
described in the book.
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Incorporating Integral Action

The methodology given above can be extended to
Include integral action. Assuming that Q, provides
this property, the final controller will do so as well,
If Q hastheform

Q(s) = sQ (s)
with Q' strictly proper.
There are anumber of ways to enforce this
constraint. A particularly smply way isto change

the cost function to
7 :/OO E{|W2(jw)?|S2(jw) — So(jw)|* }

Jwl?

dw

—
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Lemma 16.5: Suppose that

(1) G, isstrictly proper with no zeros on the imaginary
axis and

(i) E{GAjwGA(-jaw)} hasaspectral factorization asin
E{Ge(jw)Ge(—jw)} = a(jw)a(—jw) = &*(w)

Then a(s) a(-9)S,(S)F(-9) + Gy(5)Gy(-S) has a
spectral factor, which we label H, and

. T O‘(S)O‘<_S>S0<S>S0(_S)Q0(S)
arg @%23‘] = _H(s) X stable part of SH(—3)

Proof: See the book.

S
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A Simple Example

Consider afirst-order system having constant
variance for the model error in the frequency

domain:
Gols) = 7'081—|— 1
%o(s) = Tc;ci 1
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(&) Without integral-action constraint

In this case, with o, and a, appropriate functions of
Iy, Ty, and 0, we can write

1 e(—725?)
H(s)H(=s) = 1—17252  1—171252

1 72(1 +€)s? +Ce7'62l7'0234

(=722 (1 - 735%)

(1+ /a@rs)(1 + y@3s)(1 — yars)(1 - yazs)
(1

(14 708) (1 + 7e18)(1 — 768) (1 — T¢15)
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Thenthereexist Al, A2, A3, and A4, also appropriate
functions of 1, 1y, and 7, so that

a(s)a(—s)S,(5)So(—s)
H(—s)

(1 —758)(1 — Ter$) e(—Tfls2)(1 + 7,5)
(1= yars)(1 = y/azs) (1~ ras)(L + 705)°
A A A A
1 n 2 n 3 n 4
1—as 1—\/azs (1+714s)? 147,

Qo(s) =

= A, +

the optimal Q isthen

~ (14 78)(1 + 7¢18) As Ay

Qls) = (14 ars)(1 + /azs) Aot (14 7¢18)? Ty TelS




Chapter 16 Goodwin, Graebe, Salgado ©, Prentice Hall 2000

To illustrate this example numerically, we take 7,= 1,
I, = 0.5, and 7= 0.4. Then we obtain the optimal Q
as

_0.31633 +1.072s2 + 1.285s + 0.529
0.158s3 + 0.81252 + 1.491s + 1.00
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It isinteresting to investigate how this optimal Q
contributes to the reduction of the loss function.

7= wa(s - S, = [ T (W) (Sa(jw) — So(jew)) 2} dw

B /_OO 1Go(j0) P1Qw) 2 + 1S4 () Qo () + So(jw) Q(jw) a2 (w)dw
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If Q(s)=0, then
J=[1S (jw)Q, (jw)|* edw=0o

and if the optimal Q is used, then the total error is
J=4.9, which has a bias error of

[1G, (jw)Q dw=4.3
and a variance error of
1S, (jw)Q, (jw)+S, (jw)Q(jw) | edw=0.6



Chapter 16 Goodwin, Graebe, Salgado ©, Prentice Hall 2000

(b) With integral-action constraint

We write

1(5)0(=9%()%0(=5) (3 (g)= (-T0)ETg £ (-7 9)(1+708)
H(-s) 0 (1= a18)(1- a28) (1-7 s)(1+7g 5) 2

— B1 + Bo + B3 Bg

1-./a1s 1-/aps (1+TCIS)2 47 S

Theoptimal Q isgiven by

(14 7o8)(1 + 7¢5) Bs By

Q(S):_(1+\/a718)(1+\/a728) (1_|—7-Cls)2 + 1+ 748
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For the same set of process parameters as above, we
obtainthe optimal Q as

3(s) 5(0.184s% + 0.411s + 0.227)
( ? S) = —
0.158s3 + 0.81252 + 1.491s + 1.00

and for Q for controller implementation is ssimply

- 0.2655 + 1)(s + 1
Qls) = Qols) + Qls) = 0(.3165284—+ 0.5)95981;)1




(c) Closed-loop system-simulation
results

For the same process parameters as above, we now
examine how the robust controller copes with plant
uncertainty by ssmulating closed-1oop responses with
different processes, and we compare the results for
the cases when Q, Isused. We choose the following
three different plants.

1

Casel: Gi(s) = 7 = Gol®)
Case 2. Ga(s) = (1)2;1
0.5

Case3: Csls) = 5577
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The frequency responses of the three plants are
shown in Figure 16.1. They are within the statistical
confidence bounds centered at G,(j ) and have
standard deviation of ./0.4.
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Figure 16.1:  Plane frequency response:
Case 1 (solid); case 2 (dashed); case 3 (dotted)
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Figures 16.2, 16.3 and 16.4 (see next 3 dlides), show
the closed-1oop responses of the three plants for a
unit set-point change, controlled by using C and C,,.
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Figure 16.2: Closed-loop responses for case 1. when
using Q, (thin line), and when using
optimal Q (thick line).
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Figure 16.3: Closed-loop responses for case 2: when
using Q, (thin line), and when using
optimal Q (thick line)
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Figure 16.4. Closed-loop responses for case 3: when
using Q, (thin line), and when using
optimal Q (thick line)
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Discussion

Casel: Gy(s) = Gy(s), so the closed-loop response
based on Q, for this case Is the desired responsg,
as specified. Theexistenceof Q causes
degradation in the nominal closed-loop
performance, but this degradation is reasonably
small, as can be seen from the closeness of the
closed-loop responses. Thisisthe price one pays
for including arobustness margin aimed at
decreasing sensitivity to modeling errors.
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Case2: Thereisalarge model error between G,(S)
and Gy(s), shown in figure 16.1. It isseen from
Figure 16.3 that, without the compensation of
optimal Q , the closed-loop system and achieves
acceptabl e closed-loop performance in the
presence of thislarge model uncertainty.
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Case 3. Although thereisalarge model error
between G,4(s) and G(s) in the low-frequency
region, this model error islesslikely to cause
Instability of the closed-loop system. Figure
16.4 illustrates that the closed-loop response
speed, when using the optimal  Q, isindeed
slower than the response speed from Q,, but the
difference issmall.
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Unstable Plant

We next briefly show how the robust design method
can be extended to the case of an unstable open-loop
plant. Asbefore, we denote the nominal model by
G, (s)=32( , the nominal controller by C, (s)={ 3
the nomlnal sensitivity by §,. We parameterize the

modified controller by:

P(s) | Aols)
o= T
L(s B,(s

where Q(s) Is a stable proper transfer function.
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It follows that

_ Ao(s)L(s) ) — Bo(s)P(s)
SO(S) B AO(S)L(S> + BO(S)P(S) TO( ) AO(S)L(S) —+ BO(S)P(S)
S1(s) = So(s) (1 - BO(LS()f)(S)> Ti(s) = T,(s) + SO(S)%&S)Q(S)



Chapter 16 Goodwin, Graebe, Salgado ©, Prentice Hall 2000

Sa(s) = 51(5) = 21(5)
L+Ti(s)Gals) 1+ T1(s) 222G,
AO(S)BO(S)Q(S>
So(s) — A, (s)L(s)+Bo(s)P(s)

As(s)P(s) Ao (5)2Q(s)
1 + (AO(S)L(3)+BO(5)P(S) + AO(S)L(S)—I—BO(S)P(S)) GG(S)

Where G,(s) and G (s) denote, as usual, the MME and
AME, respectively.
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As before, we used a weighted measure of S,(s) - $(9),
where the weight is now chosen as

Wa(s) = (14 T1(s)GAa(s))
In this case

_ — _  Ao(s)Bp(s)Q(s)
WZ(S)[SZ(S) SO(S)]_ AO(S)L(S)OJrBO(s)P(s)

L(S)[P(s)+AO(s)Q(S)] ZG
- S
[AO(S)L(S)+B()(S)P(5)]2AO(S) D( )
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We express the additive modeling error G (S) In

the form:
Gi(s) = N(s)  No(s) _ Bo(s) + Be(s)  Bo(s)
j D(s)  Do(s) Ao(s)+Ac(s) Ao(s)
Ao(s)Be(s)  Bo(s)Ac(s)
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Thus

_ A0 (s)Bo (s)Q(s)
W2(S)[SZ(S)_SO(S)]__Ao(S)LS(S)(lB?)(S)Z(S)

_ _L(s)[P(s)+A0(5)Q(s)] (Ao (s)B;(s)—By (S) A (s))

[A0 (s)L(s)+Bo(s)P(s)]?

We can then proceed essentially as in the open-loop
stable case.
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We illustrate the above ideas below on a practical
system. (A laboratory scale heat exchanger). Note
that this system iIs open-loop stable.
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Practical Example: Laboratory
Heat Exchanger
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Pictorial View of Heat Exchanger

MV Controllable
> 3 Heat
Source
Heating Bed
/ \Q_Q_/ Air Flow
>
Fan /
o Temperature Sensor
__ O PV
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Approximate Model

Based on physical experiments, the model is of the
form:

Ke ST
(1s+1)

G(s) O

K O[1.5,2.2]
T[0.1,0.2)

r1[0.38,0.42]
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System Identification

An experiment was carried out to estimate the
model. The resultant input/output data is shown on

the next dide.
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Plant I nput-Output Data

Heal Exchanger Inpul [W)

o 1 1 1 1 1 1 1 1
a R0 100 180 200 280 300 R0 400 480

fime [zeconds)

B E

Heal Exchanger Juipul [deg )
&
1

MY B &

1 1 1 1 1 1 1 1
100 150 200 250 200 250 400 450
fime [seconds)

=
&
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Error Bounds

The estimated normal frequency response together
with error bounds are shown on the next dide.
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Estimated Frequency Response

Myquist Plot

Estimated maodel

05k, ............. % Foint Estimate
' : : 70% confidence cloud

A5 B i
_2 1 1 | i ]
- 0.5 i 0.5 1 1.3 z
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Nominal Model and Controller

-3.4s+33.7

Estimated M odel Go(9) =
S®+90.2s+21.3

s%+9.2s+21.3, 100

Nomina Controller =
() (s+102 337

In YoulaForm
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Stage 2: Robust Control Design

Use Model Error Quantification accounting for noise
and undermodelling to modify the controller.

Result Is;

2.04|s* +22.1s% +177.85° + 623.35+809.1)

[]
) (5+9.95)2(5+5.1)2
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Step Responses with Nominal
and robust Controllers

MNominal Conlroller al 1= Operaling Paind

Acb=l Conroller al 15 Operaling Poinl

Operating
Point #1

Temp [deg T
Temp [deg <)

I I I E I I I
a 5 10 15 20 a 5 L [4] 15 20
Time [=6c5) Time [=ec5)

Acbu= Contoller a1 2nd Operaling FPaini

Momimal Commller i Znd Operaling Foin

Operating
Point #2

Temp [deg )
Temp [deg<)

15 20 a

Nominal Robust
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We see from the above results that the robust
controller gives (dlightly) less sensitivity of the
design to operating point.
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Cheap Control Fundamental
Limitations

We next use the idea of quadratic optimal design to
revisit the issue of fundamental limitations.

Consider the standard single-input single-output
feedback control loop shown, for example, in Figure
5.1 on the next dlide.
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Figure 5.1:

Dl(s) 510 DO(S)
s s s l + l Y (s
ﬂ;(ﬁ&» C(s) L(-)TOL Gol(s) _:Q__()>
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Cheap Control

We will be interested in minimizing the quadratic cost
assoclated with the output response expressed by:

J=1[" y(t)?at
Note that, no account is taken here of the size of the
control effort. Hence, this class of problem, isusually
called cheap control. It isobviously impractical to
allow arbitrarily large control signals. However, by not
restricting the control effort, we obtain a benchmark
against which other, more realistic, scenarios can be
judged. Thusthese results give afundamental limit to
the achievable performance.
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We will consider two types of disturbances, namely

(1) (impulsive measurement noise (d.(t) = At)), and
(1) astep-output disturbance (d,(t) =L«(t)).

We then have the following result that expresses the
connection between the minimum achievable value
for the cost function

J=1[ y(t)*dt
and the open-loop properties of the system.
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Theorem 16.1. Consider the SISO feedback control
loop and the cheap control cost function. Then

(1) For impulsive measurement noise, the minimum
value for the cost is

N
‘J*:;pi

where p, ..., py, denote the open-loop plant polesin
the right half plane, and
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(1) For astep-output disturbance, the minimum value for
the cost is

M
1
J¥=) =
%

where c,, ..., C,, denote the open-loop plant zeros in
the right-half plane.

Proof: See the book.



Frequency-Domain Limitations
Revisited
We saw earlier in Chapter 9 that the sensitivity and

complementary sensitivity functions satisfied the
following integral equations in the frequency domain

(1)
. k, N
717j;°InSO(Ja))+2h:§pi

where k., denotes lim,_ ,sH,(s) and H,(s) Is the open-
loop transfer function.
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(i)
1
T

j;”cjz InT,
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1 _<1
2k, 2

(1) i =3¢

wherek, = limg_ ;SH(S).

Thereisclearly aremar
the right-hand sides of t
results for cheap contro

Kable consistency between
ne above eguations and the

. Thisis nhot acoincidence

as shown in the following result:
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Theorem 16.2: Consider the standard SISO control
loop in which the open-loop transfer function H ()
is strictly proper and H,,(0)1 = 0 (i.e. thereis
Integral action), then

(1) for impulse measurement noise, the following
Inequality holds:

Ley)225 + 1 Pinis, (jo)dw=3p,
2 -2 7 0 i=1 !

where p, ..., py denote the plant right-half plane poles.
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(i) for impulse a unit-step output disturbance, then

+ j;”lnT (Jw)dw‘EC

Ey(t)z 2k

wherec, ..., ¢, denote the plant right-half plane poles.

Proof: See the book.
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Summary

0 Optimization can often be used to assist with certain
aspects of control-system design.

0 The answer provided by an optimization strategy isonly as
good as the question that has been asked - that is, how well
the optimization criterion captures the relevant design
specifications and trade-offs.

0 Optimization needs to be employed carefully: keepin
mind the complex web of trade-offsinvolved in a control-
system design.
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0 Quadratic optimization is a particularly ssmple strategy and
leads to a closed-form solution.

0 Quadratic optimization can be used for optimal Q
synthesis.

0 We have also shown that quadratic optimization can be
used effectively to formulate and solve robust control
problems when the model uncertainty is specified in the
form of afreguency-domain probabilistic error.
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0 Within this framework, the robust controller biases the
nominal solution so as to create conservatism, in view of
the expected model uncertainty, while attempting to
minimize affecting the achieved performance.

0 Thiscan be viewed as aformal way of achieving the
bandwidth reduction that was discussed earlier as a

mechanism for providing a robustness gap in control-
system design.



