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Chapter 16

Control Design Based on
Optimization
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Thus far, we have seen that design constraints arise from
a number of different sources:
❖    structural plant properties, such as NMP zeros or unstable 

poles;

❖    disturbances - their frequency content, point of injection, 
and measurability;

❖    architectural properties and the resulting algebraic laws of 
trade-off;  and

❖    integral constraints and the resulting integral laws of trade-off.
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The subtlety as well as complexity of the emergent
trade-off web, into which the designer needs to ease
a solution, motivates interest in what is known as
criterion-based control design or optimal control
theory:  the aim here is to capture the control
objective in a mathematical criterion and solve it for
the controller that (depending on the formulation)
maximizes or minimizes it.
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Three questions arise:

1. Is optimization of the criterion mathematically
feasible?

2. How good is the resulting controller?

3. Can the constraint of the trade-off web be
circumvented by optimization?
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Optimal Q Synthesis

In this chapter, we will combine the idea of  Q
synthesis with a quadratic optimization strategy to
formulate the design problem.

This approach is facilitated by the fact, already
observed, that the nominal sensitivity functions are
affine functions of  Q(s).
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Assume that a target function H0(s) is chosen for the
complementary sensitivity T0(s).  We have seen in
Chapter 15 that, if we are given some stabilizing
controller C(s) = P(s)/L(s), then all stabilizing controllers
can be expressed as

the nominal complementary sensitivity function is then
given by

C(s) =

P (s)
E(s)

+Qu(s)
Ao(s)
E(s)

L(s)
E(s)

−Qu(s)
Bo(s)
E(s)

To(s) = H1(s) +Qu(s)V (s)
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where H1(s) and V(s) are stable transfer functions of
the form

We see that T0 is linear in the design variable Qu.
We will use a quadratic optimization criterion to
design Qu.  The design problem is formally stated on
the next slide.

H1(s) =
Bo(s)P (s)
E(s)F (s)

; V (s) =
Bo(s)Ao(s)
E(s)F (s)
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Quadratic Optimal Synthesis

Let  S  denote the set of all real rational stable
transfer functions;  then the quadratic optimal
synthesis problem can be stated as follows:

Problem (Quadratic optimal synthesis problem).
Find                    such thatS∈)(0 sQu

Qo
u(s) = arg min

Qu(s)∈S

∥∥Ho − To

∥∥2

2
= arg min

Qu(s)∈S

∥∥Ho −H1 −QuV
∥∥2

2
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The criterion on the previous slide uses the quadratic
norm, also called the H2-norm, of a function X(s)
defined as

∥∥X∥∥
2

=
[

1
2π

∫ ∞

−∞
X(jω)X(−jω)dω

] 1
2
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To solve this problem, we first need a preliminary
result that is an extension of Pythagoras’ theorem.

Lemma 16.1:  Let  S0 ⊂  S  be the set of all real
strictly proper stable rational functions, and let        be
the set of all real strictly proper rational functions that
are analytical for ℜ {s}≤0.  Furthermore assume that
Xs(s) ∈  S0  and  Xu(s) ∈       .  Then

Proof:  See the book.

⊥
0S

⊥
0S∥∥Xs +Xu

∥∥2

2
=

∥∥Xs

∥∥2

2
+

∥∥Xu

∥∥2

2
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To use the above result, we will need to split a
general function X(s) into a stable part Xs(s) and an
unstable part Xu(s).  We can do this via a partial-
fraction expansion.  The stable poles and their
residues constitute the stable part.
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We note that the cost function of interest here has the
general form

where  W(s) = H0(s) - H1(s), H0(s) is the target
complementary sensitivity, and H1(s) and V(s) are as
below:

H1(s) =
Bo(s)P (s)
E(s)F (s)

; V (s) =
Bo(s)Ao(s)
E(s)F (s)

Qo
u(s) = arg min

Qu(s)∈S

∥∥W (s) −Qu(s)V (s)
∥∥2

2
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Solution to the Quadratic Synthesis
Problem

Lemma 16.2:  Provided that V(s) has no zeros on the
imaginary axis, then

where

such that Vm(s) is a factor with poles and zeros in the
open LHP and Va(s) is an all-pass factor with unity
gain, and where [X]s denotes the stable part of X.

Proof:  Essentially uses Lemma 16.1 - see the book.

arg min
Qu(s)∈S

∥∥W (s) −Qu(s)V (s)
∥∥2

2
= (Vm(s))−1[Va(s)−1W (s)]s

V (s) = Vm(s)Va(s)
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The solution will be proper only either if V has
relative degree zero or if both V has relative degree
one and W has relative degree of at least one.
However, improper solutions can readily be turned
into approximate proper solutions by adding an
appropriate number of fast poles to ).(0 sQu
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Returning to the problem posed earlier, we see that
Lemma 16.2 provided an immediate solution, by
setting

W (s) = Ho(s) −H1(s)
V (s) = Vm(s)Va(s)
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The above procedure can be modified to include a
weighting function Ω(jω).  In this framework, the
cost function is now given by

No additional difficulty arises, because it is enough
to simply redefine V(s) and W(s) to convert the
problem into the form

∥∥(Ho − To)Ω
∥∥2

2

Qo
u(s) = arg min

Qu(s)∈S

∥∥W (s) −Qu(s)V (s)
∥∥2

2
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It is also possible to restrict the solution space to
satisfy additional design specifications.  For
example, forcing an integration is achieved by
parameterizing Q(s) as
and introducing a weighting function Ω(s) = 1/s.
(H0(0) = 1 is also required).  This does not alter the
affine nature of T0(s) on the unknown function.
Hence, the synthesis procedure developed above can
be applied, provided that we first redefine the
function, V(s) and W(s).

Q(s) = sQ(s) + [Go(0)]−1Qa(s)
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Example 16.1:  Unstable Plant

Consider a plant with nominal model

Assume that the target function for T0(s) is given by

Go(s) =
2

(s− 1)(s+ 2)

Ho(s) =
9

s2 + 4s+ 9
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We first choose the observer polynomial
E(s) = (s+4)(s+10) and the controller polynomial
F(s) = s2 + 4s + 9.
We then solve the pole-assignment equation
A0(s)L(s) + B0(s)P(s) = E(s)F(s) to obtain the
prestabilizing control law expressed in terms of P(s)
and L(s).  The resultant polynomials are

P (s) = 115s+ 270; L(s) = s2 + 17s+ 90
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Now consider any controller from the class of
stabilizing control laws as parameterized in

The quadratic cost function is then as in

C(s) =

P (s)
E(s)

+Qu(s)
Ao(s)
E(s)

L(s)
E(s)

−Qu(s)
Bo(s)
E(s)

Qo
u(s) = arg min

Qu(s)∈S

∥∥W (s) −Qu(s)V (s)
∥∥2

2
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Consequently

The optimal Qu(s) is then obtained

W (s) = Ho(s) − Bo(s)P (s)
E(s)F (s)

=
9s2 − 104s− 180

E(s)F (s)

V (s) =
Bo(s)Ao(s)
E(s)F (s)

= Va(s)Vm(s) =
[
s− 1
s+ 1

] [
2(s+ 2)(s+ 1)
E(s)F (s)

]

[V −1
a (s)W (s)]s =

(
1
7

)
5s3 + 158s2 + 18s− 540

E(s)F (s)

Qo
u(s) = (Vm(s))−1[(Va(s))−1W (s)]s =

(
1
14

)
5s3 + 158s2 + 18s− 540

(s+ 1)(s+ 2)
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We observe that              is improper.  However, we
can approximate it by a suboptimal (but proper)
transfer function,             by adding one fast pole to
           :

)(0 sQu

),(~ sQ
)(0 sQu

Q̃(s) = Qo
u(s)

1
τs+ 1

where τ � 1
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Example 16.2:  Nonminimum-phase Plant

Consider a plant with nominal model

It is required to synthesize, by using H2
optimization, a one-d.o.f. control loop having the
target function

and to provide exact model inversion at ω = 0.

Go(s) =
−3s+ 18

(s+ 6)(s+ 3)

Ho(s) =
16

s2 + 5s+ 16
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The appropriate cost function is defined as

Then the cost function takes the form

where

J(Q) =
∥∥(Ho(s) − (sQ(s) + [Go(0)]−1)Go(s))Ω(s)

∥∥2

2
where Ω(s) =

1
s

J(Q) =
∥∥W −QV

∥∥2

2

V (s) = Go(s) =
−s+ 6
s+ 6

3
s+ 3

; W (s) =
3s2 + 13s+ 102

(s2 + 5s+ 16)(s2 + 9s+ 16)
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We first note that

The optimal           can then be obtained by using

from this Q0(s) can be obtained as
One fast pole has to be added to make this function
proper.

Va(s) =
−s+ 6
s+ 6

; Vm(s) =
3

s+ 3

)( sQ

Qo
u(s) = (Vm(s))−1[(Va(s))−1W (s)]s

Q
o
(s) =

0.1301s2 + 0.8211s+ 4.6260
s2 + 5s+ 16

.1)()( 00 += sQssQ
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Robust Control Design with
Confidence Bounds

We next show briefly how optimization methods can
be used to change a nominal controller so that the
resultant performance is robust against model errors.

For the sake of argument we will use statistical
confidence bounds - although other types of
modelling error can also be used.
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Statistical Confidence Bounds
We have argued in Chapter 3 that no model can give
an exact description of a real process.

Our starting point will be to assume the existence of
statistical confidence bounds on the modeling error.

In particular, we assume that we are given a nominal
frequency response, G0(jω), together with a statistical
description of the associated errors of the form

where G(jω) is the true (but unknown) frequency
response and G∈ (jω), as usual, represents the additive
modeling error.

G(jω) = Go(jω) +Gε(jω)
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We assume that  G∈   possesses the following
probabilistic properties:

α(s) is the stable, minimum-phase spectral factor.
Also,      is the given measure of the modeling error.

The function α would normally be obtained from
some kind of identification procedure.

E{Gε(jω)} = 0

E{Gε(jω)Gε(−jω)} = α(jω)α(−jω) = α̃2(ω)

α~
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Robust Control Design

Based on the nominal model G0(jω), we assume that
a design is carried out that leads to acceptable
nominal performance.  This design will typically
account for the usual control-design issues such as
nonminimum-phase behavior, the available input
range, and unstable poles.  Let us say that this has
been achieved with a nominal controller C0 and that
the corresponding nominal sensitivity function is S0.
Of course, the value S0 will not be achieved in
practice, because of the variability of the achieved
sensitivity, S, from S0.
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Let us assume, to begin, that the open-loop system is
stable. We can thus use the simple form of the
parameterization of all stabilizing controllers to
express C0 and S0 in terms of a stable parameter Q0.

Co(s) =
Qo(s)

1 −Go(s)Qo(s)

So(s) = 1 −Go(s)Qo(s)
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The achieved sensitivity, S1, when the nominal
controller C0 is applied to the true plant is given by

where G∈  is the additive model error.

S1(s) =
So(s)

1 +Qo(s)Gε(s)
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Our proposal for robust design now is to adjust the
controller so that the distance between the resulting
achieved sensitivity, S1, and S0 is minimized.  If we
change Q0 to Q and hence C0 to C, then the achieved
sensitivity changes to

S2(s) =
1 −Go(s)Q(s)
1 +Gε(s)Q(s)



 Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 16

Where

and

Observe that S1 denotes, the sensitivity achieved
when the plant is G0 and the controller is
parameterized by Q, and  S0 denotes the sensitivity
achieved when the plant is G0 and the controller is
parameterized by Q0.

C(s) =
Q(s)

1 −Go(s)Q(s)

S2(s) − So(s) =
1 −Go(s)Q(s)
1 +Gε(s)Q(s)

− (1 −Go(s)Qo(s))
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Pictorially

Ge -  Random Variable 
             describing uncertainty

ωdSSEJ � −= 2
02

Design Criterion

S0

S1

S2

C0 G0

C0 G0

Ge

C1 G0

Ge
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Frequency Weighted Errors

Unfortunately, (S2 - S0) is a nonlinear function of Q
and G∈ .
In place of minimizing some measure of the
sensitivity error, we instead consider a weighted
version with W2 = 1+G∈ Q.  Thus, consider

where                                     is the desired adjustment
in Q0(s) to account for G∈ (s).

W2(s)(S2(s) − So(s)) = (1 −Go(s)Q(s)) − (1 −Go(s)Qo(s))(1 +Gε(s)Q(s))

= −Go(s)Q̃(s) − So(s)Qo(s)Gε(s) − So(s)Q̃(s)Gε(s).

)()()(~
0 sQsQsQ −=
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The procedure that we now propose for choosing
is to find the value that minimizes

Q~

J = ‖W2(S − So)‖2
2 =

∫ ∞

−∞
E

{
|W2(jω) (S2(jω) − So(jω)) |2

}
dω

=
∫ ∞

−∞
|Go(jω)|2|Q̃(jω)|2 + |So(jω)Qo(jω) + So(jω)Q̃(jω)|2α̃2(ω)dω
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This loss function has intuitive appeal.  The first term
on the right-hand side represents the bias error.  It can
be seen that this term is zero if             (i.e., we leave
the controller unaltered).  The second term represents
the variance error.  This term is zero if                  - i.e.
if we choose open-loop control.  These observations
suggest that there are two extreme cases.  For
(no model uncertainty), we leave the controller
unaltered;  as                (large model uncertainty), we
choose open-loop control, which clearly is robust for
the case of an open-loop stable plant.

0~ =Q

0
~ QQ −=

0~ =α

∞→α~
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Intuitive Interpretation (Stable Case)

ωdGEQQSQGJ e
�
�
�

�
�
�+� += ∞

∞−
22

0
2

0
22

0
~~

Uncertainty

Bias Term Variance Term

Due to using  Q ≠ Q0
in nominal case

00 �� eGas

Hence:   Bias/Variance Trade-Off
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The robust design is described in:

Lemma 16.4:  Suppose that
(i) G0 is strictly proper with no zeros on the imaginary axis

and
(ii) E{G∈ (jω)G∈ (-jω)} has a spectral factorization.

Then α(s)α(-s)S0(s)S0(-s) + G0(s)G0(-s) has a spectral
factor, which we label  H,  and the optimal      is given
by

Q~

Q̃opt(s) = arg min
Q̃(s)∈S

‖W2(S2 − So)‖2

= − 1
H(s)

× stable part of
α(s)α(−s)So(s)So(−s)Qo(s)

H(−s)
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Proof:   Uses Lemma 16.2 - see the book.
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The value of       found in Lemma 16.4 gives an
optimal trade-off between the bias error and the
variance term.

Q~
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A final check on robust stability (which is not
automatically guaranteed by the algorithm) requires
us to check that  |G∈ (jω)||Q(jω) < 1 for all ω and all
likely values of G (j ).  A procedure for doing this is
described in the book.
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Incorporating Integral Action
The methodology given above can be extended to
include integral action.  Assuming that Q0 provides
this property, the final controller will do so as well,
if      has the form

with       strictly proper.
There are a number of ways to enforce this
constraint.  A particularly simply way is to change
the cost function to

Q~
Q̃(s) = sQ̃

′
(s)

Q ′~

J
′

=
∫ ∞

−∞

E
{
|W2(jω)|2|S2(jω) − So(jω)|2

}
|jw|2 dω
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Lemma 16.5:  Suppose that
(I) G0 is strictly proper with no zeros on the imaginary

axis and

(ii)  E{G∈ (jω)G∈ (-jω)} has a spectral factorization as in

Then α(s)α(-s)S0(s)S0(-s) + G0(s)G0(-s) has a
spectral factor, which we label H, and

Proof:  See the book.

arg min
Q̃(s)∈S

J
′

= − s

H(s)
× stable part of

α(s)α(−s)So(s)So(−s)Qo(s)
sH(−s)

E{Gε(jω)Gε(−jω)} = α(jω)α(−jω) = α̃2(ω)
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A Simple Example

Consider a first-order system having constant
variance for the model error in the frequency
domain:

Go(s) =
1

τos+ 1

Qo(s) =
τos+ 1
τcls+ 1

So(s) =
τcls

τcls+ 1

α̃2(ω) = ε > 0 ∀ω
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(a) Without integral-action constraint

In this case, with  α1 and  α2 appropriate functions of
τ0, τcl, and ∈ ,  we can write

H(s)H(−s) =
1

1 − τ2
o s

2
+
ε(−τ2

cls
2)

1 − τ2
cls

2

=
1 − τ2

cl(1 + ε)s2 + ετ2
clτ

2
o s

4

(1 − τ2
o s

2)(1 − τ2
cls

2)

=
(1 +

√
a1s)(1 +

√
a2s)(1 −√

a1s)(1 −√
a2s)

(1 + τos)(1 + τcls)(1 − τos)(1 − τcls)
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Then there exist A1, A2, A3, and A4, also appropriate
functions of τ0, τcl, and ∈ , so that

the optimal      is then

α(s)α(−s)So(s)So(−s)
H(−s) Qo(s) =

(1 − τos)(1 − τcls)
(1 −√

a1s)(1 −√
a2s)

ε(−τ2
cls

2)(1 + τos)
(1 − τcls)(1 + τcls)2

= Ao +
A1

1 −√
a1s

+
A2

1 −√
a2s

+
A3

(1 + τcls)2
+

A4

1 + τcl

Q~

Q̃(s) = − (1 + τos)(1 + τcls)
(1 +

√
a1s)(1 +

√
a2s)

[
Ao +

A3

(1 + τcls)2
+

A4

1 + τcls

]
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To illustrate this example numerically, we take τ0 = 1,
τcl = 0.5, and ∈  = 0.4.  Then we obtain the optimal
as

Q~

Q̃(s) = −0.316s3 + 1.072s2 + 1.285s+ 0.529
0.158s3 + 0.812s2 + 1.491s+ 1.00
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It is interesting to investigate how this optimal
contributes to the reduction of the loss function.

Q~

J = ‖W2(S − So)‖2
2 =

∫ ∞

−∞
E

{
|W2(jω) (S2(jω) − So(jω)) |2

}
dω

=
∫ ∞

−∞
|Go(jω)|2|Q̃(jω)|2 + |So(jω)Qo(jω) + So(jω)Q̃(jω)|2α̃2(ω)dω
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If                   then

and if the optimal      is used, then the total error is
J = 4.9, which has a bias error of

and a variance error of

,0)(~ =sQ

�
∞
∞− ∞== ωεωω djQjSJ 2

00 |)()(|

Q~

�
∞
∞− = 3.4|~)(| 2

0 ωω dQjG

�
∞
∞− =+ 6.0|)(~)()()(| 2

000 ωεωωωω djQjSjQjS
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(b) With integral-action constraint

We write

The optimal      is given by

Q̃(s) = − s(1 + τos)(1 + τcls)
(1 +

√
a1s)(1 +

√
a2s)

[
B3

(1 + τcls)2
+

B4

1 + τcls

]

scl
B

scl

B
sa

B
sa

B

sclscl

sscl
sasa

scls
sH

sSsSss sQ

ττ

ττ

ττετταα

++−−

+−

+−

−−
−−

−
−−

+++=

=

1
4

2)1(
3

21
2

11
1

2)1)(1(

)01)(2(

)21)(11(
)1)(01(
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)(0)(0)()( )(
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For the same set of process parameters as above, we
obtain the optimal       as

and for Q for controller implementation is simply

Q~

Q̃(s) = − s(0.184s2 + 0.411s+ 0.227)
0.158s3 + 0.812s2 + 1.491s+ 1.00

Q(s) = Qo(s) + Q̃(s) =
(0.265s+ 1)(s+ 1)

0.316s2 + 0.991s+ 1
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(c) Closed-loop system-simulation
      results

For the same process parameters as above, we now
examine how the robust controller copes with plant
uncertainty by simulating closed-loop responses with
different processes, and we compare the results for
the cases when Q0 is used.  We choose the following
three different plants.

Case 1:

Case 2:

Case 3:

G1(s) =
1

s+ 1
= Go(s)

G2(s) =
1.3e−0.3

0.5s+ 1

G3(s) =
0.5

0.5s+ 1
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The frequency responses of the three plants are
shown in Figure 16.1.  They are within the statistical
confidence bounds centered at G0(jω) and have
standard deviation of .4.0



 Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 16

Figure 16.1:  Plane frequency response:
Case 1 (solid); case 2 (dashed); case 3 (dotted)
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Figures 16.2, 16.3 and 16.4 (see next 3 slides), show
the closed-loop responses of the three plants for a
unit set-point change, controlled by using C and C0.
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Figure 16.2: Closed-loop responses for case 1: when
using Q0 (thin line), and when using 
optimal Q (thick line).
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Figure 16.3: Closed-loop responses for case 2: when
using Q0 (thin line), and when using 
optimal Q (thick line)
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Figure 16.4: Closed-loop responses for case 3: when
using Q0 (thin line), and when using 
optimal Q (thick line)
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Discussion

Case 1: G1(s) = G0(s), so the closed-loop response
based on Q0 for this case is the desired response,
as specified.  The existence of        causes
degradation in the nominal closed-loop
performance, but this degradation is reasonably
small, as can be seen from the closeness of the
closed-loop responses.  This is the price one pays
for including a robustness margin aimed at
decreasing sensitivity to modeling errors.

Q~
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Case 2: There is a large model error between G2(s)
and G0(s), shown in figure 16.1.  It is seen from
Figure 16.3 that, without the compensation of
optimal     , the closed-loop system and achieves
acceptable closed-loop performance in the
presence of this large model uncertainty.

Q~
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Case 3: Although there is a large model error
between G3(s) and G0(s) in the low-frequency
region, this model error is less likely to cause
instability of the closed-loop system.  Figure
16.4 illustrates that the closed-loop response
speed, when using the optimal     , is indeed
slower than the response speed from Q0, but the
difference is small.

Q~
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Unstable Plant

We next briefly show how the robust design method
can be extended to the case of an unstable open-loop
plant.  As before, we denote the nominal model by

 , the nominal controller by
the nominal sensitivity by S0.  We parameterize the
modified controller by:

where Q(s) is a stable proper transfer function.

C(s) =
P (s)
E(s) + Ao(s)

E(s) Q(s)
L(s)
E(s) −

Bo(s)
E(s) Q(s)

)(0
)(0

0 )( sA
sBsG = )(

)(
0 )( sL

sPsC =
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It follows that

So(s) =
Ao(s)L(s)

Ao(s)L(s) +Bo(s)P (s)
To(s) =

Bo(s)P (s)
Ao(s)L(s) +Bo(s)P (s)

S1(s) = So(s)
(

1 − Bo(s)Q(s)
L(s)

)
T1(s) = To(s) +

So(s)Bo(s)Q(s)
L(s)
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S2(s) =
S1(s)

1 + T1(s)G∆(s)
=

S1(s)

1 + T1(s)Ao(s)
Bo(s)Gε

=
So(s) − Ao(s)Bo(s)Q(s)

Ao(s)L(s)+Bo(s)P (s)

1 +
(

Ao(s)P (s)
Ao(s)L(s)+Bo(s)P (s) + Ao(s)2Q(s)

Ao(s)L(s)+Bo(s)P (s)

)
Gε(s)

Where G∆(s) and G∈ (s) denote, as usual, the MME and 
AME, respectively.
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As before, we used a weighted measure of S2(s) - S0(s),
where the weight is now chosen as

In this case
W2(s) = (1 + T1(s)G∆(s))

[ ]
[ ]

[ ]
)()(

)()()(

2
02)()(0)()(0

)()(0)()(

)()(0)()(0
)()(0)(0

022
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sPsBsLsA

sQsAsPsL

sPsBsLsA
sQsBsA
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We express the additive modeling error G∈ (s) in
the form:

Gε(s) =
N(s)
D(s)

− No(s)
Do(s)

=
Bo(s) +Bε(s)
Ao(s) +Aε(s)

− Bo(s)
Ao(s)

� Ao(s)Bε(s)
Ao(s)2

− Bo(s)Aε(s)
Ao(s)2
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Thus

We can then proceed essentially as in the open-loop
stable case.
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We illustrate the above ideas below on a practical
system.  (A laboratory scale heat exchanger).  Note
that this system is open-loop stable.
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Practical Example:  Laboratory
Heat Exchanger
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Approximate Model

( )1
)(

+
≅

−

s
KesG

sT

τ

[ ]2.2,5.1∈K

[ ]2.0,1.0∈T

[ ]42.0,38.0∈τ

Based on physical experiments, the model is of the
form:
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System Identification

An experiment was carried out to estimate the
model.  The resultant input/output data is shown on
the next slide.
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Plant Input-Output Data
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Error Bounds

The estimated normal frequency response together
with error bounds are shown on the next slide.
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Estimated Frequency Response
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Nominal Model and Controller

Estimated Model
3.212.9

7.334.3)( 2 ++
+−=
ss

ssGθ

Nominal Controller
in Youla Form ( ) 7.33

100*
10

3.212.9)( 2

2
0

+
++=

s
sssQ
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Stage 2:  Robust Control Design

Use Model Error Quantification accounting for noise
and undermodelling to modify the controller.

( )
( ) ( )22

234

1.595.9
1.8093.6238.1771.2204.2)(

++
++++≅

ss
sssssQ

Result is:
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Step Responses with Nominal
and robust Controllers

Nominal Robust

Operating
Point #1

Operating
Point #2
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We see from the above results that the robust
controller gives (slightly) less sensitivity of the
design to operating point.
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Cheap Control Fundamental
Limitations

We next use the idea of quadratic optimal design to
revisit the issue of fundamental limitations.
Consider the standard single-input single-output
feedback control loop shown, for example, in Figure
5.1 on the next slide.
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Figure 5.1:

E(s)
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C(s)
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Cheap Control
We will be interested in minimizing the quadratic cost
associated with the output response expressed by:

Note that, no account is taken here of the size of the
control effort.  Hence, this class of problem, is usually
called cheap control.  It is obviously impractical to
allow arbitrarily large control signals.  However, by not
restricting the control effort, we obtain a benchmark
against which other, more realistic, scenarios can be
judged.  Thus these results give a fundamental limit to
the achievable performance.

dttyJ 2
02

1 )(�
∞=
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We will consider two types of disturbances, namely
(i) (impulsive measurement noise (dm(t) = δ(t)), and
(ii) a step-output disturbance (d0(t) =µ(t)).

We then have the following result that expresses the
connection between the minimum achievable value
for the cost function

and the open-loop properties of the system.
dttyJ 2

02
1 )(�

∞=
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Theorem 16.1:  Consider the SISO feedback control
loop and the cheap control cost function.  Then

(i) For impulsive measurement noise, the minimum 
value for the cost is

where pi, …, pN, denote the open-loop plant poles in
the right half plane, and

�
=

=
N

i
ipJ

1
*
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(ii) For a step-output disturbance, the minimum value for
the cost is

where c1, …, cM denote the open-loop plant zeros in
the right-half plane.

Proof:  See the book.

�
=

=
M

i ic
J

1

1*
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Frequency-Domain Limitations
Revisited

We saw earlier in Chapter 9 that the sensitivity and
complementary sensitivity functions satisfied the
following integral equations in the frequency domain

(i)

where kh denotes lims→ 0sH0l(s) and H0l(s) is the open-
loop transfer function.

��
=

∞ =+
N

i
i

h p
k

jS
1

00 2
)(ln1 ωπ
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(ii)

where kv = lims→ 0sH0l(s).

There is clearly a remarkable consistency between
the right-hand sides of the above equations and the
results for cheap control.  This is not a coincidence
as shown in the following result:

��
=

∞ =+
M

i iv ck
jT

1
00 2

1
2

1)(ln11 ω
ωπ
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Theorem 16.2:  Consider the standard SISO control
loop in which the open-loop transfer function H0l(s)
is strictly proper and H0l(0)-1 = 0 (i.e. there is
integral action), then

(i) for impulse measurement noise, the following 
inequality holds:

where pi, …, pN denote the plant right-half plane poles.

���
=

∞∞ =+≥
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(ii) for impulse a unit-step output disturbance, then

where ci, …, cM denote the plant right-half plane poles.

Proof:  See the book.
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Summary
❖ Optimization can often be used to assist with certain

aspects of control-system design.

❖ The answer provided by an optimization strategy is only as
good as the question that has been asked - that is, how well
the optimization criterion captures the relevant design
specifications and trade-offs.

❖ Optimization needs to be employed carefully:  keep in
mind the complex web of trade-offs involved in al control-
system design.
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❖ Quadratic optimization is a particularly simple strategy and
leads to a closed-form solution.

❖ Quadratic optimization can be used for optimal Q
synthesis.

❖ We have also shown that quadratic optimization can be
used effectively to formulate and solve robust control
problems when the model uncertainty is specified in the
form of a frequency-domain probabilistic error.
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❖ Within this framework, the robust controller biases the
nominal solution so as to create conservatism, in view of
the expected model uncertainty, while attempting to
minimize affecting the achieved performance.

❖ This can be viewed as a formal way of achieving the
bandwidth reduction that was discussed earlier as a
mechanism for providing a robustness gap in control-
system design.


