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Chapter 18

Synthesis via State Space
Methods
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Here, we will give a state space interpretation to
many of the results described earlier.  In a sense, this
will duplicate the earlier work.  Our reason for doing
so, however, is to gain additional insight into linear-
feedback systems.  Also, it will turn out that the
alternative state space formulation carries over more
naturally to the multivariable case.
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Results to be presented include
◆ pole assignment by state-variable feedback

◆ design of observers to reconstruct missing states from
available output measurements

◆ combining state feedback with an observer

◆ transfer-function interpretation

◆ dealing with disturbances in state-variable feedback

◆ reinterpretation of the affine parameterization of all
stabilizing controllers.
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Pole Assignment by State Feedback

We begin by examining the problem of closed-loop
pole assignment.  For the moment, we make a
simplifying assumption that all of the system states
are measured.  We will remove this assumption later.
We will also assume that the system is completely
controllable.  The following result then shows that
the closed-loop poles of the system can be arbitrarily
assigned by feeding back the state through a suitably
chosen constant-gain vector.
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Lemma 18.1:  Consider the state space nominal
model

Let           denote an external signal.

ẋ(t) = Aox(t) + Bou(t)
y(t) = Cox(t)

)( tr
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Then, provided that the pair (A0, B0) is completely
controllable, there exists

such that the closed-loop characteristic polynomial is
Acl(s), where Acl(s) is an arbitrary polynomial of
degree  n.

Proof:  See the book.

u(t) = r̄ − Kx(t)

K
�
= [k0, k1, . . . , kn−1]
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Note that state feedback does not introduce additional
dynamics in the loop, because the scheme is based only
on proportional feedback of certain system variables.
We can easily determine the overall transfer function
from           to y(t).  It is given by

where

and Adj stands for adjoint matrices.

)( tr
Y (s)
R(s)

= Co(sI− Ao + BoK)−1Bo =
CoAdj{sI− Ao + BoK}Bo

F (s)

F (s)
�
= det{sI− Ao + BoK}
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We can further simplify the expression given above.
To do this, we will need to use the following results
from Linear Algebra.

Lemma 18.2:  (Matrix inversion lemma).  Consider
three matrices,  A ∈  �n×n, B ∈  �n×m, C ∈  �m×n.
Then, if A + BC is nonsingular, we have that

Proof:  See the book.

(A + BC)−1 = A−1 − A−1B
(
I + CA−1B

)−1
CA−1
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In the case for which B = g ∈  �n  and CT = h ∈  �n,
the above result becomes

(
A + ghT

)−1
=

(
I − A−1 ghT

1 + hTA−1g

)
A−1
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Lemma 18.3:  Given a matrix W ∈  �n×n and a pair
of arbitrary vectors  φ1 ∈  �n  and  φ2 ∈  �n, then
provided that W and                   are nonsingular,

Proof:  See the book.

,21
TW φφ+

Adj(W + φ1φ
T
2 )φ1 = Adj(W )φ1

φT
2 Adj(W + φ1φ

T
2 ) = φT

2 Adj(W )
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Application of Lemma 18.3 to equation

leads to

we then see that the right-hand side of the above
expression is the numerator B0(s) of the nominal
model, G0(s).  Hence, state feedback assigns the
closed-loop poles to a prescribed position, while the
zeros in the overall transfer function remain the same
as those of the plant model.

Y (s)
R(s)

= Co(sI− Ao + BoK)−1Bo =
CoAdj{sI− Ao + BoK}Bo

F (s)

CoAdj{sI− A + BoK}Bo = CoAdj{sI− Ao}Bo
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State feedback encompasses the essence of many
fundamental ideas in control design and lies at the
core of many design strategies.  However, this
approach requires that all states be measured.  In
most cases, this is an unrealistic requirement.  For
that reason, the idea of observers is introduced next,
as a mechanism for estimating the states from the
available measurements.
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Observers

Consider again the state space model

A general linear observer then takes the form

where the matrix J is called the observer gain and is
the state estimate.

ẋ(t) = Aox(t) + Bou(t)
y(t) = Cox(t)

˙̂x(t) = Aox̂(t) + Bou(t) + J(y(t) − Cox̂(t))

)(ˆ tx
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The term

is known as the innovation process.  For nonzero J
v(t) represents the feedback error between the
observation and the predicted model output.

ν(t)
�
= y(t) − Cox̂(t)
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The following result shows how the observer gain J
can be chosen such that the error,           defined as

can be made to decay at any desired rate.

)(~ tx

x̃(t)
�
= x(t) − x̂(t)
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Lemma 18.4:  The estimation error          satisfies

Moreover, provided the model is completely
observable, then the eigenvalues of (A0 - JC0) can be
arbitrarily assigned by choice of J.

Proof:  See the book.

)(~ tx
˙̃x(t) = (Ao − JCo)x̃(t)
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Example 18.1:  Tank-level estimation

As a simple application of a linear observer to
estimate states, we consider the problem of two
coupled tanks in which only the height of the liquid
in the second tank is actually measured but where we
are also interested in estimating the height of the
liquid in the first tank.  We will design a virtual
sensor for this task.

A photograph is given on the next slide.
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Coupled Tanks Apparatus
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Figure 18.1: Schematic diagram of two coupled tanks



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 18

Water flows into the first tank through pump 1 a rate
fi(t) that obviously affects the head of water in tank 1
(denoted by h1(t)).  Water flows out of tank 1 into
tank 2 at a rate f12(t), affecting both h1(t) and h2(t).
Water than flows out of tank 2 at a rate fe controlled
by pump 2.

Given this information, the challenge is to build a
virtual sensor (or observer) to estimate the height of
liquid in tank 1 from measurements of the height of
liquid in tank 2 and the flows f1(t) and f2(t).
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Before we continue with the observer design, we first
make a model of the system.  The height of liquid in
tank 1 can be described by the equation

Similarly, h2(t) is described by

The flow between the two tanks can be approximated
by the free-fall velocity for the difference in height
between the two tanks:

dh1(t)
dt

=
1
A

(fi(t) − f12(t))

dh2(t)
dt

=
1
A

(f12(t) − fe)

f12(t) =
√

2g(h1(t) − h2(t))
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We can linearize this model for a nominal steady-
state height difference (or operating point).  Let

This yields the following linear model:

where

h1(t) − h2(t) = ∆h(t) = H + hd(t)

d

dt

[
h1(t)
h2(t)

]
=

[
−k k
k −k

] [
h1(t)
h2(t)

]
+

[
1 0
0 −1

][
f1(t) − K

√
H

2

f2(t) + K
√

H
2

]

k =
K

2
√
H
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We are assuming that h2(t) can be measured and h1(t)
cannot, so we set C = [0  1]  and  D = [0   0].  The resulting
system is both controllable and observable (as you can
easily verify).  Now we wish to design an observer

to estimate the value of h2(t).  The characteristic
polynomial of the observer is readily seen to be

so we can choose the observer poles;  that choice gives us
values for J1 and J2.

J =
[
J1

J2

]

s2 + (2k + J1)s+ J2k + J1k
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If we assume that the operating point is H = 10%,
then k = 0.0411.  If we wanted poles at s = -0.9291
and  s = -0.0531, then we would calculate that J1 = 0.3
and  J2 = 0.9.  If we wanted two poles at s = -2, then
J2 = 3.9178 and  J1 = 93.41.
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The equation for the final observer is then

d

dt

[
ĥ1(t)
ĥ2(t)

]
=

[
−k k
k −k

] [
ĥ1(t)
ĥ2(t)

]
+

[
1 0
0 −1

][
f1(t) − K

√
H

2

f2(t) + K
√

H
2

]
+ J(h2(t) − ĥ2(t))
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The data below has been collected from the real
system shown earlier
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The performance of the observer for tank height is
compared below with the true tank height which is
actually measured on this system.

Actual height in tank 1 (blue), 
Observed height in tank 1 (red)
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Combining State Feedback with
an Observer

A reasonable conjecture arising from the last two sections
is that it would be a good idea, in the presence of
unmeasurable states, to proceed by estimating these states
via an observer and then to complete the feedback control
strategy by feeding back these estimates in lieu of the true
states.  Such a strategy is indeed very appealing, because
it separates the task of observer design from that of
controller design.  A-priori, however, it is not clear how
the observer poles and the state feedback interact.  The
following theorem shows that the resultant closed-loop
poles are the combination of the observer and the state-
feedback poles.
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Separation Theorem

Theorem 18.1:  (Separation theorem).  Consider the
state space model and assume that it is completely
controllable and completely observable.  Consider
also an associated observer and state-variable
feedback, where the state estimates are used in lieu
of the true states:

u(t) = r̄(t) − Kx̂(t)

K
�
=

[
k0 k1 . . . kn−1

]
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Then
(i) the closed-loop poles are the combination of the poles

from the observer and the poles that would have resulted
from using the same feedback on the true states -
specifically, the closed-loop polynomial Acl(s) is given
by

(ii) The state-estimation error           cannot be controlled
from the external signal          .

Proof:  See the book.

)(~ tx
)( tr

Acl(s) = det(sI− Ao + BoK) det(sI− Ao + JCo)
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The above theorem makes a very compelling case
for the use of state-estimate feedback. However, the
reader is cautioned that the location of closed-loop
poles is only one among many factors that come into
control-system design.  Indeed, we shall see later
that state-estimate feedback is not a panacea.  Indeed
it is subject to the same issues of sensitivity to
disturbances, model errors, etc. as all feedback
solutions.  In particular, all of the schemes turn out
to be essentially identical.
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Transfer-Function Interpretations

In the material presented above, we have developed
a seemingly different approach to SISO linear
control-systems synthesis.  This could leave the
reader wondering what the connection is between
this and the transfer-function ideas presented earlier.
We next show that these two methods are actually
different ways of expressing the same result.
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Transfer-Function Form of Observer

We first give a transfer-function interpretation to the
observer.  We recall that the state space observer
takes the form

where  J  is the observer gain and            is the state
estimate.

)(ˆ tx

˙̂x(t) = Aox̂(t) + Bou(t) + J(y(t) − Cox̂(t))
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A transfer-function interpretation for this observer is
given in the following lemma.

Lemma 18.5:  The Laplace transform of the state
estimate has the following properties:
(a) The estimate can be expressed in transfer-function form as:

where T1(s) and T2(s) are the following two stable transfer
functions:

X̂(s) = (sI− Ao + JCo)−1(BoU(s) + JY (s)) = T1(s)U(s) + T2(s)Y (s)
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T1(s)
�
= (sI− Ao + JCo)−1Bo

T2(s)
�
= (sI− Ao + JCo)−1J

Note that T1(s) and T2(s) have a common denominator of

E(s)
�
= det(sI− Ao + JCo)
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(b) The estimate is related to the input and initial conditions by

where  f0(s) is a polynomial vector in s with coefficients 
depending linearly on the initial conditions of the error

(c) The estimate is unbiased in the sense that

where G0(s) is the nominal plant model.

Proof:  See the book.

).(~ tx

X̂(s) = (sI− Ao)−1BoU(s) − f0(s)
E(s)

T1(s) + T2(s)Go(s) = (sI− Ao)−1Bo
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Transfer-Function Form of State-
Estimate Feedback
We next give a transfer-function interpretation to the
interconnection of an observer with state-variable
feedback.  The key result is described in the following
lemma.
Lemma 18.6:
(a) The state-estimate feedback law

can be expressed in transfer-function form as

where E(s) is the polynomial defined previously.

u(t) = r̄(t) − Kx̂(t)

K
�
=

[
k0 k1 . . . kn−1

]
L(s)
E(s)

U(s) = −P (s)
E(s)

Y (s) +R(s)
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In the above feedback law

where K is the feedback gain and J is the observer gain.

L(s)
E(s)

= 1 + KT1(s) =
det(sI− Ao + JCo + BoK)

E(s)
P (s)
E(s)

= KT2(s) =
KAdj(sI− Ao)J

E(s)
P (s)
L(s)

= K[sI− Ao + JCo + BoK]−1J
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(b) The closed-loop characteristic polynomial is

Acl(s) = det(sI− Ao + BoK) det(sI− Ao + JCo)
= F (s)E(s) = Ao(s)L(s) +Bo(s)P (s)
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(c) The transfer function from             to Y(s) is given by

where B0(s) and A0(s) are the numerator and 
denominator of the nominal loop respectively.  P(s) and
L(s) are the polynomials defined above.

)( tR
Y (s)
R(s)

=
Bo(s)E(s)

Ao(s)L(s) +Bo(s)P (s)

=
Bo(s)

det(sI− Ao + BoK)

=
Bo(s)
F (s)
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The foregoing lemma shows that polynomial pole
assignment and state-estimate feedback lead to the
same result.  Thus, the only difference is in the terms
of implementation.
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The combination of observer and state-estimate
feedback has some simple interpretations in terms of a
standard feedback loop.  A first possible interpretation
derives directly from

by expressing the controller output as

This is graphically depicted in part (a) of Figure 18.2
on the following slide.  We see that this is a two-
degree-of-freedom control loop.

L(s)
E(s)

U(s) = −P (s)
E(s)

Y (s) +R(s)

U(s) =
E(s)
L(s)

(
R(s) − P (s)

E(s)
Y (s)

)
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Figure 18.2:  Separation theorem in standard loop forms

−+

Y (s)R(s)

b)

−+

a)

R̄(s) Y (s)

P (s)
E(s)

E(s)
L(s) Go(s)

P (s)
L(s)

Go(s)
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A standard one-degree-of-freedom loop can be
obtained if we generate          from the loop reference
r(t) as follows:

We then have

This corresponds to the one-degree-of-freedom loop
shown in part (b) of Figure 18.2.

)( tr

R(s) =
P (s)
E(s)

R(s)

U(s) =
P (s)
L(s)

(R(s) − Y (s))
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Note that the feedback controller can be
implemented as a system defined, in state space
form, by the 4-tuple (A0 - JC0 - B0K, J, K, 0).
(MATLAB provides a special command, reg, to
obtain the transfer function form.)
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Transfer Function for Innovation
Process

We finally give an interpretation to the innovation
process.  Recall that

This equation can also be expressed in terms of Laplace
transfer functions by using

as

We can use the above result to express the innovation
process v(t) in terms of the original plant transfer
function.  In particular, we have the next lemma.

ν(t) = y(t) − Cox̂(t)

X̂(s) = (sI− Ao + JCo)−1(BoU(s) + JY (s)) = T1(s)U(s) + T2(s)Y (s)

Eν(s) = L [ν(t)] = Y (s) − Co[T1(s)U(s) + T2(s)Y (s)]
= (1 − CoT2(s))Y (s) − CoT1U(s)
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Lemma 18.7:  Consider the state space model and the
associated nominal transfer function G0(s) = B0(s)/A0(s).
Then the innovations process, v(t), can be expressed as

where E(s) is the observer polynomial (called the
observer characteristic polynomial).

Proof:  See the book.

Eν(s) =
Ao(s)
E(s)

Y (s) − Bo(s)
E(s)

U(s)
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Reinterpretation of the Affine
Parameterization of all Stabilizing Controllers

We recall the parameterization of all stabilizing
controllers (see Figure 15.9 below)

+

−
+

+

+

+
E(s)
L(s)

Bo(s)
E(s)

Qu(s)

Ao(s)
E(s)

R(s)

P (s)
E(s)

Stabilising structure

Plant
U(s) Y (s)
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In the sequel, we take R(s) = 0.  We note that the
input U(s) in Figure 15.9 satisfies

we can connect this result to state-estimate feedback
and innovations feedback from an observer by using
the results of the previous section.  In particular, we
have the next lemma.

L(s)
E(s)

U(s) = −P (s)
E(s)

Y (s) +Qu(s)
[
Bo(s)
E(s)

U(s) − Ao(s)
E(s)

Y (s)
]
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Lemma 18.8:  The class of all stabilizing linear
controllers can be expressed in state space form as

where K is a state-feedback gain           is a state
estimate provided by any stable linear observer, and
Ev(s) denotes the corresponding innovation process.

Proof:  The result follows immediately upon using
earlier results.

U(s) = −KX̂(s) −Qu(s)Eν(s)

)(ˆ sx
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This alternative form of the class of all stabilizing
controllers is shown in Figure 18.3.

Figure 18.3: State-estimate feedback interpretation
of all stabilizing controllers

controllers
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State-Space Interpretation of
Internal Model Principle

A generalization of the above ideas on state-estimate
feedback is the Internal Model Principle (IMP)
described in Chapter 10.  We next explore the state
space form of IMP from two alternative
perspectives.
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(a) Disturbance-estimate feedback

One way that the IMP can be formulated in state space
is to assume that we have a general deterministic input
disturbance d(t) with a generating polynomial Γd(s).
We then proceed by building an observer so as to
generate a model state estimate            and a
disturbance estimate,           These estimates can then
be combined in a control law of the form

which cancels the estimated input disturbance from
the input.

)(ˆ0 tx
).(ˆ td

u(t) = −Kox̂o(t) − d̂(t) + ¯r(t)
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We will show below that the above control law
automatically ensures that the polynomial Γd(s)
appears in the denominator, L(s), of the
corresponding transfer-function form of the
controller.
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Consider a composite state description, which
includes the plant-model state

and the disturbance model state:

ẋd(t) = Adxd(t)
d(t) = Cdxd(t)

ẋ(t) = Aox(t) + Bou(t)
y(t) = Cox(t)
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We note that the corresponding 4-tuples that define the
partial models are (A0, B0, C0, 0) and (Ad, 0, Cd, 0) for
the plant and disturbance, respectively.  For the
combined state                                we have

The plant-model output is given by

[ ] ,)()(0
TT

d
T txtx

ẋ(t) = Ax(t) + Bu(t) where A =
[
Ao BoCd

0 Ad

]
B =

[
Bo

0

]

y(t) = Cx(t) where C =
[
Co 0

]
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Note that this composite model will, in general, be
observable but not controllable (on account of the
disturbance modes).  Thus, we will only attempt to
stabilize the plant modes, by choosing K0 so that
(A0 - B0K0) is a stability matrix.

The observer and state-feedback gains can then be
partitioned as on the next slide.
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When the control law                                         is
used, then, clearly Kd = Cd.  We thus obtain

u(t) = −Kox̂o(t) − d̂(t) + ¯r(t)

J =
[
Jo

Jd

]
; K =

[
Ko Kd

]

sI− A =
[
sI − Ao −BoCd

0 sI− Ad

]
; JC =

[
JoCo 0
JdCo 0

]
; BK =

[
BoKo BoCd

0 0

]
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The final control law is thus seen to correspond to
the following transfer function:

From this, we see that the denominator of the control
law in polynomial form is

We finally see that  Γd(s) is indeed a factor of L(s) as
in the polynomial form of IMP.

C(s) =
P (s)
L(s)

=
[
Ko Kd

] [
sI− Ao + BoKo + JoCo 0

JdCo sI− Ad

]−1 [
Jo

Jd

]

L(s) = det(sI− Ao + JoCo + BoKo) det(sI− Ad)
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(b) Forcing the Internal Model
Principle via additional dynamics

Another method of satisfying the internal Model
Principle in state space is to filter the system output
by passing it through the disturbance model.  To
illustrate this, say that the system is given by

ẋ(t) = Aox(t) + Bou(t) + Bodi(t)
y(t) = Cox(t)
ẋd(t) = Adxd(t)
di(t) = Cdxd(t)
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We then modify the system by passing the system
output through the following filter:

where observability of (Cd, Ad) implies
controllabililty of                 .  We then estimate  x(t)
using a standard observer, ignoring the disturbance,
leading to

ẋ′(t) = AT
d x

′(t) + CT
d y(t)

( )T
d

T
d CA ,

˙̂x(t) = Aox̂(t) + Bou(t) + Jo(y(t) − Cox̂(t))
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The final control law is then obtained by feeding
back both          and           to yield

where [K0, Kd] is chosen to stabilize the composite
system.

)(ˆ tx )( tx ′
u(t) = −Kox̂(t) − Kdx

′(t)
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The results in section 17.9 establish that the cascaded
system is completely controllable, provided that the
original system does not have a zero coinciding with
any eigenvalue of Ad.
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The resulting control law is finally seen to have the
following transfer function:

The denominator polynomial is thus seen to be

and we see again that Γd(s), is a factor of L(s) as
required.

C(s) =
P (s)
L(s)

=
[
Ko Kd

] [
sI− Ao + BoKo + JoCo BoKo

0 sI − AT
d

]−1 [
Jo

CT
d

]

L(s) = det(sI− Ao + JoCo + BoKo) det(sI− Ad)



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 18

Dealing with Input Constraints in the
Context of State-Estimate Feedback

We give a state space interpretation to the anti-wind-
up schemes presented in Chapter 11.

We remind the reader of the two conditions placed
on an anti-wind-up implementation of a controller,

(i) the states of the controller should be driven by the 
actual plant input;

(ii) the state should have a stable realization when 
driven by the actual plant input.
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The above requirements are easily met in the context
of state-variable feedback.  This leads to the anti-
wind-up scheme shown in Figure 18.4.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 18

Figure 18.4: Anti-wind-up Scheme
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In the above figure, the state      should also include
estimates of disturbances.  Actually, to achieve a
one-degree-of-freedom architecture for reference
injection, then all one need do is subtract the
reference prior to feeding the plant output into the
observer.

We thus see that anti-wind-up has a particularly
simple interpretation in state space.

x̂
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Summary
❖ We have shown that controller synthesis via pole placement

can also be presented in state space form:
Given a model in state space form, and given desired
locations of the closed-loop poles, it is possible to compute a
set of constant gains, one gain for each state, such that
feeding back the states through the gains results in a closed
loop with poles in the prespecified locations.

❖ Viewed as a theoretical result, this insight complements the
equivalence of transfer function and state space models with
an equivalence of achieving pole placement by synthesizing a
controller either as transfer function via the Diophantine
equation or as consntant-gain state-variable feedback.
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❖ Viewed from a practical  point of view, implementing this
controller would require sensing the value of each state.
Due to physical, chemical, and economic constraints,
however, one hardly ever has actual measurements of all
system states available.

❖ This raises the question of alternatives to actual
measurements and introduces the notion of s-called
observers, sometimes also called soft sensors, virtual
sensors, filter, or calculated data.

❖ The purpose of an observer is to infer the value of an
unmeasured state from other states that are correlated with
it and that are being measured.
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❖ Observers have a number of commonalities with control
systems:

◆ they are dynamical systems;
◆ they can be treated in either the frequency or the time domain;
◆ they can be analyzed, synthesized, and designed;
◆ they have performance properties, such as stability, transients, and

sensitivities;
◆ these properties are influenced by the pole-zero patterns of their

sensitivities.
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❖ State estimates produced by an observer are used for several
purposes:

◆ constraint monitoring;
◆ data logging and trending;
◆ condition and performance monitoring;
◆ fault detection;
◆ feedback control.

❖ To implement a synthesized state-feedback controller as
discussed above, one can use state-variable estimates from an
observer in lieu of unavailable measurements;  the emergent
closed-loop behavior is due to the interaction between the
dynamical properties of system, controller, and observer.
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❖ The interaction is quantified by the third-fundamental result
presented in this chapter:  the nominal poles of the overall
closed loop are the union of the observer poles and the closed-
loop poles induced by the feedback gains if all states could be
measured.  This result is also known as the separation theorem.

❖ Recall that controller synthesis is concerned with how to
compute a controller that will give the emergent closed loop a
particular property, the constructed property.

❖ The main focus of the chapter is on synthesizing controllers
that place the closed-loop poles in chosen locations;  this is a
particular constructed property that allows certain design
insights to be achieved.
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❖ There are, however, other useful constructed properties as
well.

❖ Examples of constructed properties for which there exist
synthesis solutions:

◆ to arrive at a specified system state in minimal time with an
energy constraint;

◆ to minimize the weighted square of the control error and energy
consumption;

◆ to achieve minimum variance control.
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❖ One approach to synthesis is to ease the constructed
property into a so-called cost-functional, objective function
or criterion, which is then minimized numerically.

◆ This approach is sometimes called optimal control, because one
optimizes a criterion.

◆ One must remember, however, that the result cannot be better than
the criterion.

◆ Optimization shifts the primary engineering task from explicit
controller design to criterion design, which then generates the
controller automatically.

◆ Both approaches have benefits, including personal preference and
experience.


