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Chapter 19

Introduction to Nonlinear
Control
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This chapter gives a brief introduction to nonlinear
control.  We will build on the linear methods so as to
benefit maximally from linear insights.  We also give
a taste of more rigorous nonlinear theory.
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Linear Control of a Nonlinear Plant
An initial question that the reader might reasonably ask
is what happens if a linear controller is applied to a
nonlinear plant.  We know from experience that this
must be a reasonable strategy in many cases because
one knows that all real plants exhibit some
(presumably) mild form of nonlinearity and yet almost
all real-world controllers are based on linear design.

We will thus pause to analyze the effect of using a
linear controller (C) on a nonlinear plant (which we
think of as being composed of a linear nominal part G0
together with nonlinear additive model error  G∈ ).
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Analysis
In the sequel we will need to mix linear and nonlinear
descriptions of systems.

A simple interpretation can be given by the analysis
by simply thinking of an operator (such as G∈ ) as
some kind of nonlinear function.  Of course,  G∈  will
in general be a dynamical system.

A more rigorous statement of what we mean by an
operator G∈   is given on the next slide.  (However,
this can be skipped on a first reading).
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Formal Definitions
We define a nonlinear dynamic operator  f  as a
mapping from one function space to another.  Thus,  f
maps functions of time into other functions of time.
Say, for example, that the time functions have finite
energy;  then we say that they belong to the space  L2,
and we then say that  f  maps functions from  L2  into
L2.  We will use the symbol  y  (without brackets) to
denote an element of a function space;  i.e.  y ∈  L2  is
of the form  {y(t) : �→�}.  We also use the notation
y = f(u)  to represent the mapping (transformation)
from  u  to  y  via  f.
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To keep track of the different components of the loop,
the controller is represented by a linear operator  C
and the nominal plant by the linear operator  G0;  the
modeling error will be characterized by an additive
nonlinear operator  G∈  .

We consider a reference input and input disturbance,
because both can be treated in a consistent fashion.

The nominal and the true one-degree-of-freedom
loops are shown in Figure 19.1.
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Figure 19.1: True and nominal control loops
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The Effect of Modeling Errors
To simplify the notation, we begin by grouping the
external signals at the input by defining

Note that this is possible because superposition holds
for the linear part of the loop.

di
′ = C〈r〉+ di
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From Figure 19.1 (a), we see that

Similarly, for the nominal loop in Figure 19.1 (b) we
have

y = (Go +Gε)〈u〉
u = −C〈y〉+ di

′

yo = −Go

〈
C〈yo〉

〉
+Go〈di

′〉
uo = −C〈yo〉+ di

′
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As usual, we define linear nominal sensitivities via

Some simple analysis then shows that the system can
be represented as in Figure 19.2, where y∈   is the
difference between the true loop output, y, and the
nominal loop output, y0.

So〈◦〉 =
1

1 +Go

〈
C〈◦〉

〉
Suo〈◦〉 =

C〈◦〉
1 +Go

〈
C〈◦〉

〉
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Figure 19.2: Error feedback loop
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Reintroducing  r  and  di  leads to the final
representation, as in Figure 19.3.
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Figure 19.3: Equivalent signal loop describing the 
effects of modeling errors
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In this figure, G∈  is the nonlinear model error.  Of
course, when G∈   happens to be linear, then the above
error model reduces to the error model used earlier to
describe the impact of linear model errors.
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Figure 19.3 is a compact way of depicting the effect
of unmodeled plant nonlinearities on the robustness
and performance of the feedback loop.  Stability,
robustness, and performance robustness can be
studied by using this representation.

We will next use the error loop described above to
study the effect of nonlinearities on a linearized
control system design.
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Example 19.1
Consider the nonlinear plant having its state space
model given by

dx1(t)
dt

= x2(t) +
(
x2(t)

)3

dx2(t)
dt

= −2x1(t)− 3x2(t) + u(t) + 0.1
(
x1(t)

)2
u(t)

y(t) = x1(t)
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Design Based on Linearized Model
Assume that a linear controller is designed for this
plant, and also assume that the design has been based
upon a small-signal linearized model.  This linearized
model has been obtained for the operating point
determined by a constant input  u(t) = uQ = 2, and the
(linear) design achieves nominal sensitivities given
by

To(s) =
9

s2 + 4s+ 9
So(s) = 1− To(s) =

s(s+ 4)
s2 + 4s+ 9
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The operating point is given by

The values for uQ, x1Q, and x2Q are then used to obtain
the linearized model G0(s), which is given by

x1Q = yQ
�
= lim

t→∞
x1(t) = 1.13 and x2Q

�
= lim

t→∞
x2(t) = 0

Go(s) =
1.13

s2 + 3.0s+ 1.55
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To achieve the desired T0(s), we have that the
controller transfer function must be given by

C(s) = [Go(s)]−1 To(s)
So(s)

= 7.96
s2 + 3.0s+ 1.55

s(s+ 4)
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We use SIMULINK to implement the error loop
block diagram shown in Figure 19.3, where Su0(s) is
given by

Suo(s) = [Go(s)]−1To(s) = 7.96
s2 + 3.0s+ 1.55

s2 + 4s+ 9
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A simulation is run with a reference,  r(t),  which has
a mean value equal to 2 and a superimposed square-
wave of amplitude 0.3.  A pulse is added as an input
disturbance.  Figure 19.4 on the next slide shows the
plant output error,  y∈ (t).
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Figure 19.4: Effects of linear modeling of a nonlinear
plant on the performance of linear-based
control design.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

Time [s]

r(t) 

d
i
(t) 

y
ε
 (t) 

linear model of a nonlinear plant] effects of linear modeling of a nonlinear plant on the
performance of linear based control design.

We see from the above plot that, for this example, and
for these particular reference signals and disturbances,
the output error y∈ (t) is quite small.  This indicates
that the design based on the linearized model is
probably adequate here.
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We see from the above example that linear designs
can perform well, at least, on some nonlinear plants,
provided that the nonlinearity is sufficiently small.
However, as performance demands grow, one is
inevitably forced to carry out an inherently nonlinear
design.  A first step in this direction is described in
the next section, where we still use a linear controller,
but a different linear controller is chosen at different
operating points.
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Switched Linear Controllers
One useful (engineering) strategy for dealing with
nonlinear systems is to split the state space up into
small regions inside which a localized linear model
gives a reasonable approximation to the response.
One can then design a set of fixed linear controllers -
one for each region.  Two issues remain to be solved:

(i) how to know which region one is in, and
(ii) how to transfer between controllers.
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The first problem above is often resolved if there
exists some measured variable that is a key indicator
of the dynamics of the system.  These variables can
be used to schedule the controllers.  For example, in
high-performance aircraft control, Mach number and
altitude are frequently used as scheduling variables.
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The second problem requires that each controller run
in a stable fashion regardless of whether it is in
charge of the plant.  This can be achieved by the anti-
wind-up strategies described in Chapter 11.
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An alternative architecture for an anti-wind-up
scheme is shown in Figure 19.5.  Here, a controller
(   i(s)) is used to cause the ith controller output to
track the true plant input.  To describe how this might
be used, let us say that we have kc controllers and that
switching between controllers is facilitated by a
device that we call a supervisor.  Thus, depending on
the state of the system at any given time instant, the
supervisor may select one of the kc controllers to be
the active controller.  The other kc - 1 controllers will
be in standby mode.

C~
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Figure 19.5: Bumpless controller transfer
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We wish to arrange bumpless transfer between the
controllers as directed by supervisor.

To cope with general situations, we place each of the
standby controllers under separate feedback control,
so that their outputs track the output of the active
controller.  Here we use the scheme previously
illustrated in Figure 19.5.
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In Figure 19.5,  u(t)  denotes the active controller
output (this controller is not shown in the diagram),
and Ci(s) denotes a standby controller having
reference signal r(t) for the particular plant output
y(t).  In the figure,             denotes the controller for
the ith controller, Ci(s).  Thus, in a sense,             is a
controller-controller.  This controller-controller is
relatively easy to design:  the plant in this case is well
known, because it is actually the ith controller.  For
this controller-controller loop, the signals r(t) and y(t)
act as disturbances.

)(~ sCi

)(~ sCi
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Pilot Scale Distillation Column Example

To illustrate the use of switched linear control of a
nonlinear plant, we will take the example of a pilot
scale distillation column.  A photo is shown, on the
next slide, of the plant which is in the Department of
Chemical Engineering at the University of Sydney.

The work on multi-model control of this plant was
carried out by Julio Rodriguez as part of his Ph.D.
studies.
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Pilot Binary Distillation Column
         Condenser     Feed-point     Reboiler
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For this system, 2 linear controllers were fitted to 2
different operating points - see the next slide.
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Multiple Model Modelling
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The performance achieved with a single fixed linear
controller was then compared with the performance
achieved with a switched linear controller comprising
2 linear controllers designed at 2 different operating
points.
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Results for single linear controller are shown below.
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Results for switched linear controller are shown below.
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Comparing the above two results we see the superior
performance achieved by the switching control law.
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Control of Systems with Smooth
Nonlinearities
When the nonlinear features are significant, the above
switching could lead to a conservative design.  If this
is the case, inherently nonlinear strategies should be
considered in the design.  To highlight some
interesting features of nonlinear problems, we will
begin by considering a simple scenario in which the
model is both stable and stably invertible.  We will
later examine more general problems.
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Static Input Nonlinearities
We will first examine the nonlinear control problem
as an extension of the ideas in Chapter 15.

Basically, we mirror the idea of the “Q” form of all
stabilizing controllers for a stable system.   His leads
to the nonlinear version of this scheme shown on the
next slide.
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Figure 19.6: IMC architecture for control of (smooth)
nonlinear systems

Note that this looks like the “Q” controller described
in the linear case - here however, the various
operators may be nonlinear.
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We also recall, from Chapter 15, that, in the linear
case of stable and minimum phase plants, Q(s) was
chosen as

In the linear case, this leads to the result

Q(s) = FQ(s)[Go(s)]−1

y(t) = FQ〈ν(t)〉
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The same basic principle can be applied to nonlinear
systems.  In the sequel we describe several methods for
obtaining approximate inverses for nonlinear dynamic
systems.
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Static Input Nonlinearities
The simplest situation occurs when the plant has a static
input nonlinearity, and there is only an output
disturbance;  then the nominal model output is given by

Note that static input nonlinearities are quite common in
practice since they correspond to known nonlinear
behaviour of input actuators (e.g. valves, etc.)

y(t) = Go〈u(t)〉+ do(t) = Go〈φ(u)〉+ do(t)
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Introducing        as a linear stable operator of appropriate
relative degree, the approximate nonlinear inverse is
simply obtained in this case by inverting the static
nonlinearity.  This leads to:

Hence,

QF

Q〈◦〉 = φ−1
(
G−1

o 〈FQ〈◦〉〉
)

u(t) = φ−1
(
G−1

o 〈FQ〈ν(t)〉〉
)
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We see that the static nonlinear function, φ, is
cancelled between the control law and the plant.
Hence, the final control loop performance as a linear
loop.

We next consider more complex situations where the
dynamics of the system also contain nonlinear
elements.
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Smooth Dynamic Nonlinearities for
Stable and Stably Invertible Models

For this class of systems, we again use the IMC
architecture on the next slide.  The parallel model is
easily constructed.  However, some attention needs to
be focussed on the approximate inverse required in
the function Q���.
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Figure 19.6:  IMC architecture for control of (smooth)
nonlinear systems
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Approximate Inversion for Models
Having Stable Inverses
We consider a plant having a nominal model of the
form

We recall that in the linear case that to develop an
approximate inverse, it was necessary to know the
relative degree.  The nonlinear version of this idea is
given in the next slide.

ρx(t)
�
=

dx(t)
dt

= f(x) + g(x)u(t)

y(t) = h(x)
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Nonlinear Relative Degree
Definition 19.1:  The relative degree of the system is
the minimum value  η∈Ν  such that if we differentiate
the system output η times then the input appears
explicitly, i.e. we have

where αη(x) is not identically zero.
ρηy(t) = βη(x) + αη(x)u(t)
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Example 19.2
Consider a system having the model

Then, if we compute the first- and second-time
derivatives of y(t), we obtain

from which we see that the relative degree of the
system is equal to 2.

ρx1(t) = −x1(t)− 0.1
(
x2(t)

)2

ρx2(t) = −2x1(t)− 3x2(t)− 0.125
(
x2(t)

)3 +
[
1 + 0.1

(
x1(t)

)2
]
u(t)

y(t) = x1(t)

ρy(t) =ρx1(t) = −x1(t)− 0.1
(
x2(t)

)2

ρ2y(t) =1.4x1(t) + 0.6x2(t) + 0.1x2(t)2 + 0.25x2(t)3

−
[
0.2 + 0.02x1(t)2

]
u(t)
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Note that, for the system

having relative degree  η, we have that, if the ith

derivative of  y(t), i=0, 1, 2, …η,  takes the form

 then  αi(x) ≡ 0  for i = 0, 1, 2, …, η -1.

ρx(t)
�
=

dx(t)
dt

= f(x) + g(x)u(t)

y(t) = h(x)

ρiy(t) = βi(x) + αi(x)u(t),
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Consider now the operator polynomial
then we see that p(ρ)y(t) can be expressed as

where

� == η ρρ 0 ;)( i
i

ipp

p(ρ)y(t) = b(x) + a(x)u(t)

b(x) =
η∑

i=0

piβi(x) and a(x) = pηαη(x)
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Final Construction of the
Approximate Inverse
The approximate inverse for the  plant is finally obtained
simply by setting p(ρ)y(t) equal to v(t).  This leads (after
changing the argument of the equation) to the following
result for u(t):

Substituting this into the original model shows that the
end result of using this control law is that the output
satisfies:

Note that, to obtain a perfect inverse at d.c., we set p0 = 1.

u(t) =
(
a(x)

)−1 (ν(t)− b(x)) = Q〈ν〉

p(ρ)y(t) = ν(t) ⇐⇒ y(t) = [p(ρ)]−1〈ν〉
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The control strategy described above is commonly
known as input-output feedback linearization, because
it leads to a linear closed-loop system from the input
v(t) to the output y(t).

Actually, we see that the final closed loop has only
denominator dynamics (i.e.                 ).  Thus, the
control law has cancelled the numerator dynamics of
the plant.  Hence a major restriction on the use of this
method is that the system must be stably invertible (i.e.
have stable numerator dynamics).

)(
)()( ρp

tvty =
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A remaining issue is how to implement Q��� because
it depends on the plant state, which is normally
unavailable.  Following the same philosophy as in the
linear case, we can estimate the state by means of a
nonlinear state observer.  For the moment, we are,
assuming that the plant is open-loop stable, so we can
use an open-loop observer.  An open-loop observer is
driven only by the plant input u(t).  It is basically an
open loop model of the system and can be represented
as shown on the next slide, where  ρ-1 denotes the
integral operator.
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Figure 19.7: Nonlinear (open loop) observer

f〈◦〉

g〈◦〉

x̂(t) +

+

O

ρ−1
u(t)
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With this observer, we can build the Q block, using
the feedback linearization scheme.  This leads to the
final implementation of Q as shown on the next slide.
Here, the observer is represented by the block labelled
O.
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Figure 19.8: Implementation of the Q block

u(t)ν(t)

+ −

[a〈◦〉]−1

x̂(t)
b〈◦〉 O

We next illustrate how we can put all of these ideas
together to design a feedback control law for a system
that is both stable and stably invertible.
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Example 19.3
Consider the nonlinear plant having a state space
model given by

dx1(t)
dt

= x2(t) +
(
x2(t)

)3

dx2(t)
dt

= −2x1(t)− 3x2(t) + u(t) + 0.1
(
x1(t)

)2
u(t)

y(t) = x1(t)
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Differentiating the plant output we see that

Thus the system has relative degree 2.

ρy(t) = x2(t) +
(
x2(t)

)3

ρ2y(t) =
(
1 + 3(x2(t))2

)dx2(t)
dt

= −(1 + 3x2
2(t))(2x1(t) + 3x2(t)) + (1 + 3(x2(t))2)(1 + 0.1(x1(t))2)u(t)
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We now choose

we then obtain a(x) and b(x) as

p(ρ) = (ρ2 + 4ρ+ 9)/9

a(x) =
(1 + 3(x2(t))2)(1 + 0.1(x1(t))2)

9

b(x) =
7x1(t) + x2(t)− 5

(
x2(t)

)3 − 6x1(t)(x2(t))2

9
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The control loop can be implemented as in Figure
19.6 with the nonlinear operator  Q��� implemented as
below:

u(t)ν(t)

+ −

[a〈◦〉]−1

x̂(t)
b〈◦〉 O

Figure 19.8
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To assess the performance of this design, we compare
it with the linear design based upon a linearized plant
model.

We choose an appropriate complementary sensitivity,
say

Go(s) =
1.13

s2 + 3.0s+ 1.55

To(s) =
9

s2 + 4s+ 9
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Which leads to the following linearized control law:

C(s) = [Go(s)]−1 To(s)
So(s)

= 7.96
s2 + 3.0s+ 1.55

s(s+ 4)
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The results of the simulation are shown below.  This
figure shows the superior tracking performance of the
nonlinear design.

Figure 19.9: Tracking performance of linear (y1) and
nonlinear (ynl) control designs for a 
nonlinear plant
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Example 19.4 (pH neutralization)
pH control is an extremely difficult problem in
practical situations, because of the large dynamic
range needed in the controller.

To deal with this issue, it is often necessary to make
structural changes to the physical setup - e.g., by
providing additional mixing tanks and multiple
reagent valves.  The interested reader is referred, for
instance, to the extensive discussion of this problem
on the web page for the book.
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To briefly summarize, we note that all reagent values
are nonlinear (i.e. they contain deadzones, hysteresis,
etc.)

Reagent Control Value

( Non-ideal !)
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These nonlinear effects in the control values lead to
control difficulties.  We briefly discuss this below.
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Problem  (Actuator Ranging)

Control valve large enough to go from pH  11 → 7

104  change in ion concentration

1% error in valve  ≡  102 change in ion concentration

Final pH error   7 ± 2   !
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Control System Design (Issues:)
Thus, multiple valves are needed to achieve desired
accuracy.
Assume valves  5%  accuracy

11 → 9.6
10

7

9.6 → 8.3 8.6
7

8.3 → 7
7.3
6.7

3 stages
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Also, we can match the errors arising from valve
nonlinearities to errors arising from input variations
by mixing in tanks of different sizes.

ωmax

ω

400

ω

20
1ω

1ω

Spectral Density

Input
Tank 1
(Small)

Tank 2
(Medium)

Tank 3
(Large) 
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Final Design

Reference:  Gregory McMillan, Pub. ISA  
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In the sequel we take the above practical issues
concerning valve imperfections for granted.  Instead,
we will focus on the design of the control law for one
of the mixing tanks focusing on the inherent
nonlinearity in the dynamics.

The key issues are:
(i) a bilinear dependence of flow and concentration;
(ii) pH is measured on a highly nonlinear (logarithmic)

scale.
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Simplified Model for pH
Neutralization
From elementary mass-balance considerations, an
appropriate state space model for pH neutralization of
the strong-acid-strong-base type is given by (We also
include a lag on the measurement):

Notice the two nonlinear effects mentioned above are
captured in this model.

dco(t)
dt

=
u(t)
V

(
cu − co(t)

)
+

q

V

(
ci + d(t)− co(t)

)
dpm(t)

dt
=

1
α

(
po(t)− pm(t)

)

po(t) = − log
[√

0.25
(
co(t)

)2 + 10−14 + 0.5co(t)
]
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The relative degree of this nonlinear system is 2 (except
when c0 = cu).  In practice, this point of singularity can
be avoided by appropriate choice of cu.

We choose

An appropriate inverse is then obtained, if we choose

The implementation of this inverse requires that c0 and
p0 be replaced by their estimates,     and      which we
obtain by using a nonlinear observer.

p(ρ) = αβρ2 + (α+ β)ρ+ 1

u(t) =
V ln(10)

β(co(t)− cu)

√
(co(t))2 + 4× 10−14

(
ν(t)− po(t)

)
+

q(ci − co(t))
co(t)− cu

0ĉ 0p̂
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The final performance of the feedback linearizing control
law is shown below:

Figure 19.10: pH control by using a nonlinear control-
design strategy - the effluent pH (thick 
line) and measured pH (thin line) are 
shown.
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Notice that the final result exhibits linear performance
due to the use of the feedback linearization design
strategy.
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Disturbances
In the above designs we have focused primarily on
the response to reference inputs.  However, in
practice, there will always be disturbances and,
indeed, these are often the main reason for doing a
control system design in the first place.

We thus briefly consider how we might (slightly)
modify the above designs to account for input or
output disturbances.
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Disturbance Issues in Nonlinear
Control
We have seen in Chapter 8, that disturbances need
special attention in control-system design.  In
particular, we found that there were subtle issues
regarding the differences between input and output
disturbances.  In the nonlinear case, these same issues
arise, but there is an extra complication arising from
nonlinear behavior.  The essence of the difficulty is
captured in Figure 19.11.
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Figure 19.11: Nonlinear operators

a

b

c1

a

b

c2
+

+

+

+

f〈◦〉

f〈◦〉

f〈◦〉

The output of these two systems are different because 
superposition does not hold for nonlinear operators.  
This implies, amongst other things, that different
strategies may be needed to deal with input or output
disturbances).
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(i)  Input disturbances
Here, we can operate on the measured plant output,
y´(t) and u(t) to estimate di(t), then cancel this at the
input to the plant by action of feedback control. We
will employ feedback linearization to implement the
approximate inverses needed to implement this basic
idea. This leads to the strategy illustrated on the next
slide.
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Figure 19.13: Control strategy for input disturbances
  Hba ≈ [Gb < Ga <•>>]-1

r(t)

di(t)

++ u(t) y(t) y′(t)

−

− +

Ga GbHa Hba

F

+

Note  Hba  can be evaluated by feedback linearization
methods.
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Note that the choice of the filter  F is important.  It
serves two purposes:

(i) to avoid an algebraic loop;
(ii) to speed up the disturbance rejection for input 

disturbances (as in the linear case).
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(ii)  Output disturbance
Here we can operate on the measured plant output,
y´(t) and u(t) to estimate  d0(t), which is combined
with the reference r(t) and passed through an
(approximate) inverse for Ga��� so as to cancel the
disturbance and cause y(t) to approach r(t).  This leads
to the strategy illustrated on the next slide.
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Figure 19.14: Control strategy for output disturbances
  Hb ≈ Gb

-1

   Ha ≈ Ga
-1

r(t) u(t) y(t)
Gb

+

+

+

−
Ga

+

−
Ha Hb

y′(t)

do(t)

Ga
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The reader can verify that, in the linear case, one can
commute the various inverses around the loops in
Figures 19.13 and 19.14 to obtain (essentially)
identical results.  However, this relies on
superposition which does not hold in the nonlinear
case.
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Example 19.5
We consider the pH problem again.

We assume one mixing tank and we ignore the lag on
the output measurement.

A schematic of the system is shown on the next slide,
together with the model.
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Example:  pH Neutralization
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We assume an input disturbance and use the control
strategy illustrated in Figure 19.3.

We use two different choices for the filter F;

(i)            [This filter is a small time constant 
filter aimed simply at avoiding an algebraic loop.]

(ii)                          [This filter contains numerator 
dynamics aimed at approximately cancelling the
slow dynamics of the plant.]

1
1

1 )( += ssF τ

( )21

11
2 )(

+

+=
s

sfsF
τ
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Input disturbance design: the effect of an appropriate
choice of the F filter.
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From the previous slide, we see that the choice of the
filter F(s) makes a significant difference to the
transient associated with input disturbance rejection.
This mirrors similar observations made in the linear
case.
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Next we compare the design for input disturbances
(Figure 19.3) with the design for output disturbances
(Figure 19.4).  The next slide shows 4 plots

- 2 correspond to the case when the disturbance 
appears at the point it was designed for

- the other 2 plots correspond to the case when 
the disturbance is not injected at the design point
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This example highlights the fact that, in nonlinear
systems, certain linear insights no longer hold,
because the principle of superposition is not valid.
Thus, particular care needs to be exercised.  We have
seen that input and output disturbances need to be
carefully considered and that design should (in
principle) be targeted at the correct disturbance
injection point.  This is all part of the excitement
associated with the control of nonlinear systems.
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More General Plants with Smooth
Nonlinearities
For simplicity, the discussion above has focused on
plants that are both stable and stably invertible.  We next
examine briefly the more general situation.  By analogy
with the linear case, one might conceive of solving the
general problem by a combination of a (nonlinear)
observer and (nonlinear) state-estimate feedback.  For
example, we found in the linear case that the closed-loop
poles are simply the union of the dynamics of the
observer and state feedback, considered separately.
Unfortunately, this does not hold in the nonlinear case
where, inter alia, there will generally be ...
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interaction between the observer and state feedback.
This makes the nonlinear problem much more difficult.

We proceed to describe some nonlinear designs which
mirror linear ideas.  However, these designs have
deficiencies arising from the basic linear philosophy
that underlies their design.
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Nonlinear Observer
We first show how local linearization can be used to
design a nonlinear observer.
Consider a plant of the form given in

Say that we are given an estimate         of the state at
time t.  We will use linearization methods to see how we
might propagate this estimate.
The linearized forms of the model about         , are
respectively

)(ˆ tx

)(ˆ tx

ρx(t)
�
=

dx(t)
dt

= f(x) + g(x)u(t)

y(t) = h(x)

[ ] [ ]
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For notational convenience, let
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The linearized model is then

This suggests the following linearized observer:

Of course, we must remember
(i) that A, B, C, D, E depend on the point about which the 

linearization is made, and
(ii) the system is really nonlinear, so the above model is only

an approximation.

ρx = Ax+Bu+E

y = Cx+D

)ˆ(ˆˆ DCJEBA −−+++= xyuxxρ
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Substituting for A, B, C, D, E leads to the following
compact representation for the observer:

This result is intuitively appealing, because the
nonlinear observer so obtained constitutes an open-loop
nonlinear model with (linear) feedback gain multiplying
the difference between the actual observations, y, and
those given by the nonlinear model             (This is
generally known as linear output injection).

)]ˆ([)ˆ()ˆ(ˆ xhyuxgxfx −++= Jρ

).ˆ( xh
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Notice that the open loop nonlinear observer used
earlier in this chapter for stable nonlinear plants is an
example of a linear output injection observer where
the injection gain happens to be taken as zero.  More
generally, the injection gain will be designed using a
linearized model as described above.

We illustrate by considering the estimation of liquid
level in 2 coupled tanks as discussed earlier in
Chapter 18.  A photo of the system is shown on the
next slide.
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Coupled Tanks Apparatus
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Recall that the height of water in one tank is measured
and it is required to estimate the height of water in the
other tank.  In Chapter 18 a linear observer was
designed.  Here we design a nonlinear observer using
linear injection as described above.  The comparison
of the true and estimated heights is given on the next
slide.
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The above results should be compared with the results
obtained with the linear observer as found in Chapter
18 (see the next slide).
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A practical application of the nonlinear observer
using linear output injection is described on the next
slide.  Here the idea is to use accurate measurements
of instantaneous rotational speed of an internal
combustion engine to estimate internal cylinder
pressure.  Note that the latter variable is difficult to
measure directly but plays an important role in engine
control to minimize pollution.
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The model for the above system is actually very
complex.  The next slide shows details of the model.
The reader should not try to follow the details of the
model.  It is simply intended to illustrate the
flexibility of this type of observer to deal with rather
complex problems.
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Nonlinear Feedback Design
Next we discuss how one might use the state estimate
in a nonlinear feedback control law.

There are myriad possibilities here.  For example, if the
system  is unstable but has a stable inverse, then one
could use feedback linearization.  If the system does not
have a stable inverse, then the basic feedback
linearization scheme cannot be used.  We thus describe a
scheme that is close in spirit to feedback linearization
but which can stabilize certain plants which are not
stably invertible.

x̂
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Generalized Feedback linearization
for Nonstability-Invertible Plants
We recall that the feedback-linearization scheme in
essence brings  p(ρ)y(t) to the set point signal  v(t)
where p(ρ) is a differential operator of degree equal to
the relative degree of the nonlinear system.  A
drawback of the scheme, however, was that it
cancelled the zero dynamics and hence required that
the system have a stable inverse.
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We note that the basic feedback-linearization scheme
achieves

However, a difficulty in the nonstably-invertible case
is that the corresponding input will not be bounded.
By focusing temporarily on the input, it seems
desirable to match the above equation by some similar
requirement on the input.  Thus, we might ask that the
input satisfy a linear dynamic model of the form

p(ρ)y(t) = ν(t)

 (ρ)u(t) = us
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Of course, the above requirements will, in general,
not be simultaneously compatible.  This suggests that
we might determine the input by combining them in
some way.  For example, we could determine the
input as that value of u(t) that satisfies a linear
combination of the form:

We call the resultant control policy:
Generalized Feedback Linearization

(1− λ)(p(ρ)y(t)− ν(t)) + (λ)( (ρ)u(t)− us) = 0



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 19

To develop the control law defined above, we
introduce a dummy input          defined by

Say that �(ρ) has degree h, and that the nonlinear
system has relative degree m.  Then the nonlinear
system between           and y(t) will have relative
degree m+h.  Hence, if we use and (m+h) degree
operator, p(ρ), then p(ρ)y(t) will depend explicitly on
          Hence, we can write

)( tu

).( tu

 (ρ)u(t) = ū(t)

)( tu

p(ρ)y = b(x) + a(x)ū
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Substituting into
gives the following nonlinear feedback control law:

This control law does not cancel the zero dynamics
unless λ=0.  Clearly for λ→0, the scheme reduces to the
feedback-linearizing control law and for λ→1, u(t)
becomes the open-loop control policy �(ρ)u(t) = us.
Because when λ→1, the control law becomes open loop,
then it follows that one class of systems that this scheme
will handle is all open-loop stable nonlinear systems
whether or not they are stably invertible.

(1− λ)(p(ρ)y(t)− ν(t)) + (λ)( (ρ)u(t)− us) = 0

ū =
(1− λ)(ν − b) + λus

(1− λ)a+ λ
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For the case of stable plants, we can use an open loop
observer.  This leads, finally, to the feedback structure
shown on the next slide.
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Figure 19.23: Generalized feedback linearization for 
open-loop stable plant
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We summarize the idea below - see next two slides



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 19

General Nonlinear Systems
❖ We consider general nonlinear systems which are not

necessarily stable nor stably invertible.

❖ To handle this type of system we introduce the Generalized
Feedback linearization (GFL) strategy:

(1 - λ)(p(ρ)y(t) - y*) + γ(l(ρ)u(t) - u*) = 0
0 ≤ λ ≤ 1

p(ρ) and l(ρ) are suitable differential operators.
With λ = 0  we revert to the usual feedback linearization
strategy.
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To develop the control law, define:

Then:

Finally

)()()( tutul =ρ

).()()()()( tuxaxbtyp ′+′=ρ

( )
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+′−−=
)()1(
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Example 19.8
Consider the nonlinear system

where  d0  represents a constant output disturbance.
Note that this system is open loop stable but is not
stably invertible.

ẋ1 = 10x1 − 10x2

ẋ2 = 16.925x1 − 16x2 − 0.1(u− tan−1 x2)
y = x2 + do
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(1) The zero dynamics can be evaluated by setting y = 0
with d0 = 0.  This leads to

Clearly the above zero dynamics are unstable
showing that the plant does not have a stable inverse.

(2) The system is open loop stable.

(3) We design a generalized feedback linearizing control
law as described above.

ẋ1 = 10x1
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Check on the failure of feedback
linearization for this example.

The system was simulated with λ = 0  and �(ρ) = 1.
This corresponds to the (basic) feedback linearization
control law.  We do not expect that this will work
here because the system does not have a stable
inverse.  Indeed, as shown on the next slide the input
blows up when we test the scheme.Note that the
output response follows the desired trajectory,
however, the input grows without bound.  The latter
outcome is a result of the nonstable invertibility of the
system.
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Figure 19.24: Simulation of basic feedback-
linearization scheme
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Next we simulate the generalized feedback
linearization scheme for different values of  λ (see
next slide)
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Figure 19.25 Simulation of the generalized feedback-
linearization scheme
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Note that as  λ decreases, so the response becomes
faster and the undershoot increases.  Of course, there
is a lower limit of λ consistent with u remaining
bounded.

We thus see that the Generalized feedback
linearization scheme appears to have led to a
satisfactory solution in this case.

Of course, this system was (at least) open loop stable.
We next consider an example which is both open loop
unstable and nonstably invertible.
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We begin by assuming that the full state is measured.
The results are shown on the next slide.
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General Nonlinear Systems
Example of the application of the GFL strategy assuming
complete state knowledge:
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Finally, we use a nonlinear observer of the type
described in Section 19.8.1.  Note that we also use the
observer to estimate the disturbance state which we
assume here to be a constant input disturbance.
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To achieve integral action with the GFL strategy, we
estimate the disturbance using a nonlinear observer.
Model including input disturbance:

Observer designed via linear output injection:
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This leads to the Generalized Feedback Linearization
scheme shown on the next slide.
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Input disturbance case:



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 19

The above scheme has been designed assuming an
input disturbance.  However, referring back to Section
19.8, we recall that for nonlinear systems, one needs
(in principle) to treat input and output disturbances
differently.  Thus, on the next slide, we suggest a
nonlinear observer that might be used when the
system is perturbed by a constant output disturbance.
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Model including constant output disturbance:

Corresponding observer designed via linear output 
injection
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We present four simulations below for this unstable,
nonstable, invertible example under different
scenarios and different disturbances.
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We see that the generalized feedback linearizing
control law has performed well when the disturbance
injection point is correctly modelled.  Less
satisfactory performance (indeed instability) results
when the input disturbance point is incorrectly
modelled.
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Anti-windup Protection
Finally, we ask a very hard question - What should we
do if the input reaches a saturation limit? Actually,
the form of nonlinear controller that we have
described above it is immediately compatible with the
state space anti-windup scheme described in Section
18.9.  An ad-hoc extension of this idea to the
nonlinear case is shown below.
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❖ Prevent the integrator from winding up by using an
appropriate ad-hoc anti-windup strategy.
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We repeat the earlier simulation but here we saturate
the input.  The results are shown on the next slide.
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The implementation of the GFL strategy using state
observers allows the inclusion of a form of anti-
windup protection.
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We see that this nonlinear controller appears to work
well for this difficult system which has the following
features:

- open loop unstable
- nonstably invertible
- input saturations limit
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All of the designs described above have been
essentially based on engineering considerations.  Of
course, we have not provided a formal proof of
stability of the resulting system.  This is a major
drawback.  Hence, if the reader wanted to use these
kinds of schemes in practice, then we would suggest
that extensive simulations should be carried out prior
to final implementation.
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Analysis of Stability for Nonlinear
Systems
Having to test stability via extensive simulations is
somewhat unsatisfactory.  Fortunately in some cases,
it is possible to analyze stability using formal
methods.  The book describes two methods.

◆ Lyapunov Stability Analysis
◆ Function Space Stability Analysis

We will focus here on the Lyapunov approach.
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Lyapunov Stability
The basic idea of Lyapunov stability of to show that
there exists a positive definite function (similar to a
measure of total energy) of the states that is
decreasing along trajectories of the system.  The
positive definite function is usually called a Lyapunov
function.

Lyapunov functions can be used to assess different
types of stability.  We formally define the concept of
Global Asymptotic Stability below:
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Definition:  Consider a discrete-time system of the form

We say that the system is globally asymptotically stable,
if, for all initial states  x[k0] and for any  ∈  > 0, there
exists a T such that ||x[k0 + τ]|| < ∈ , for all τ ≥ T.

(Basically, this states that given any initial condition, if
we wait long enough, the size of the state will fall below
any given number ε.)

We next show how a Lyapunov function can be used to
assess Global Asymptotic Stability.

x[k + 1] = f (x[k]) ; x[ko] = xo
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Formal Requirements on a
Lyapunov Function
If we can find a function V(x) ∈  �   (a Lyapunov
function) having the following properties:

(i) V(x) is a positive definite function of x:  i.e. V(x) > 0 for 
all  x ≠ 0, V(x) is continuous and is a strictly increasing 
function of |x|, and V(x) is radially unbounded - i.e.,
|V(x)| →∞ for all ||x|| →∞.

(ii)V is decreasing along trajectories - that is,

We then have, the following theorem, due to Lyapunov.

−(V (f(x))− V (x)) is positive definite
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Theorem 19.1:  (Lyapunov Stability).  The solution of
                        is globally asymptotically

stable if there exists a Lyapunov function for the
system satisfying properties (i) and (ii) above.

Proof:  See the book.

x[k + 1] = f (x[k]) ; x[ko] = xo
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An application of Lyapunov methods will be given in
Chapter 23, where we use this approach to prove
stability of a general nonlinear-model predictive-
control algorithm.

The basic idea of Lyapunov stability can also be used
to determine simple stability results that hold in
special cases.  We illustrate this below by describing
tools for assessing stability of a control loop
containing a single static (memoryless) nonlinearity.
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Circle Criterion
The Lyapunov approach to nonlinear stability is a
powerful tool.  The main difficulty, however, is in
finding a suitable Lyapunov function.  One class of
problems for which an elegant solution to the issue of
nonlinear stability exists is that of a feedback system
comprising a linear dynamic block together with
static (or memoryless) nonlinear feedback.  This is
often called the Lur’e problem - see Figure 19.21.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 19

Figure 19.21: The single-input single-output Lur’e 
  problem

To analyze this situation, we can use a very neat result
(known as the circle criterion).  To prove this result, we
will utilize a particular Lyapunov function that is
matched to this special problem.  We also need the
technical result given on the next slide.
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Kalman-Yacubovich Lemma
Lemma 19.1:  Given a stable single-input single-output
linear system, (A, B, C, D), with (A, B) controllable,
and given a real vector, υ, and scalars γ ≥ 0 and ε > 0,
and a positive definite matrix Q, then there exists a
positive definite matrix P and a vector q such that

ATP + PA = -qqT- εQ
and

PB - υ = λ½q

if and only if  ε  is small enough, and the scalar function
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satisfies

where ℜ {·} denotes the real part.

We can now state the following stability result:

H(s) = γ + 2vT (sI− A)−1B

	{H(jω)} > 0, for all ω
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Circle Criterion
Theorem 19.2:  Consider the Lur’e system illustrated
in Figure 19.21.  Provided
(i) the linear system                                        is stable, `

completely controllable, completely observable, and has a
Nyquist plot that lies strictly to the right of                    and

(ii) the nonlinearity ϕ(t, y) belongs to the sector (0, k) in the
sense that

then the feedback loop of Figure 19.21 is globally 
asymptotically stable.

Proof:  See the book (uses the Kalman-Yacubovich
Lemma together with a Special Lyapunov function)

CxyBAxx =+= ;ξ�

,0,1 >− kk

0 ≤ yφ(t, y) ≤ ky2 ∀y ∈ R , ∀t ≥ 0
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The previous result can be extended to the case when the
nonlinearity lies in a sector (k1, k2) in the sense that

For example, we have the following corollary for the
case 0 < k1 < k2:

Corollary 19.1:  Consider the Lur’e system illustrated in
Figure 19.21 with G(s) = C(sI - A)-1B + D.  Provided ...

k1y
2 ≤ yϕ(t, y) ≤ k2y

2
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(i) The linear system                                      has nc unstable 
poles, is completely controllable, completely observable 
and has a Nyquist plot that does not enter a circle of center
              and radius               but encircles it nc times 
counterclockwise.  Then, the loop is globally asymptotically
stable.
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We illustrate the application of the above idea to on e
of the systems used earlier to illustrate nonlinear
control system design.  Earlier we stated (without
proof) that the system was open loop stable.  Here we
establish this fact.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 19

Example 19.7
Consider the nonlinear system

The system can be put into the Lur’e structure, with

It is readily seen that
Also, it is readily verified that the Nyquist plot lies to
the right of the point -1.  Stability of the system follows
immediately from Theorem 19.2.

ẋ1 = 10x1 − 10x2

ẋ2 = 16.925x1 − 16x2 + 0.1 tan−1(x2)− 0.1u
y = x2

A =
[

10 −10
16.925 −16

]
; B =

[
0

−0.1

]

C =
[
0 1

]
ϕ(y) = tan−1(y)

0 ≤ yϕ(y) ≤ y2
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Summary
❖ So far, the book has emphasized linear systems and

controllers.

❖ This chapter generalizes the scope to include various types
of nonlinearities.

❖ A number of properties that are very helpful in linear
control are not - or not directly - applicable to the nonlinear
case.

◆ Frequency analysis:  The response to a sinusoidal signal is not
necessarily a sinusoid;  therefore, frequency analysis, Bode plots,
etc., cannot be carried over directly from the linear case.

◆ Transfer function:  The notion of transfer functions, poles, zeros,
and their respective cancellation is not directly applicable.
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◆ Stability becomes more involved.

◆ Inversion:  It was highlighted in Chapter 15, on controller
parameterizations, that, regardless of whether the controller contains
the inverse of the model as a factor and regardless of whether one
inverts the model explicitly, control is fundamentally linked to the
ability to invert.  Numerous nonlinear functions encountered,
however, are not invertible (such as saturations, for example).

◆ Superposition does not apply;  that is:  the effects of two signals
(such as set-point and disturbance) acting on the system individually
cannot simply be summed (superimposed) to determine the effect of
the signals acting simultaneously on the system.

◆ Commutativity does not apply.
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❖ As a consequence, the mathematics for nonlinear control become
more involved, solutions and results are not as complete, and
intuition can fail more easily than in the linear case.

❖ Nevertheless, nonlinearities are frequently encountered and are a
very important consideration.

❖ Smooth static nonlinearities at input and output
◆ are frequently a consequence of nonlinear actuator and sensor

characteristics
◆ are the easiest form of nonlinearities to compensate
◆ can be compensated by applying the inverse function to the relevant

signal, thus obtaining a linear system in the precompensated signals.  (Use
caution, however, with points singular such as division by zero, for
particular signal values.)
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❖ Nonsmooth nonlinearities cannot, in general, be exactly
compensated or linearized.

❖ This chapter applies a nonlinear generalization of the affine
parameterization of Chapter 15 to construct a controller that
generates a feedback-linearizing controller if the model is
smoothly nonlinear with stable inverse.

❖ Nonlinear stability can be investigated by using a variety of
techniques.  Two common strategies are

◆ Lyapunov methods;
◆ function-space methods.
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❖ Extensions of linear robustness analysis to the nonlinear
case are possible.

❖ There also exist nonlinear sensitivity limitations that mirror
those for the linear case.


