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Chapter 19

| ntroduction to Nonlinear
Control
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This chapter gives abrief introduction to nonlinear
control. We will build on the linear methods so asto
benefit maximally from linear insights. We also give
ataste of more rigorous nonlinear theory.
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L inear Control of a Nonlinear Plant

An initial question that the reader might reasonably ask
Iswhat happens if alinear controller is applied to a
nonlinear plant. We know from experience that this
must be a reasonabl e strategy in many cases because
one knows that all real plants exhibit some
(presumably) mild form of nonlinearity and yet almost
all real-world controllers are based on linear design.

We will thus pause to analyze the effect of using a
linear controller (C) on anonlinear plant (which we
think of as being composed of a linear nominal part G,
together with nonlinear additive model error G/).
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Analysis

In the sequel we will need to mix linear and nonlinear
descriptions of systems.

A simple interpretation can be given by the analysis
by ssimply thinking of an operator (suchas G ) as
some kind of nonlinear function. Of course, G, will
In general be adynamical system.

A more rigorous statement of what we mean by an
operator G, Isgiven on the next slide. (However,
this can be skipped on a first reading).
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Formal Definitions

We define a nonlinear dynamic operator f asa
mapping from one function space to another. Thus, f
maps functions of time into other functions of time.
Say, for example, that the time functions have finite
energy; then we say that they belong to the space L.,
and we then say that f maps functionsfrom L, into
L,. Wewill usethe symbol y (without brackets) to
denote an element of afunction space; 1.e. yUL, IS
of theform {y(t) : R-R}. We also use the notation
y = f(u) to represent the mapping (transformation)
from u to y via f.



Chapter 19 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

To keep track of the different components of the loop,
the controller Is represented by alinear operator C
and the nominal plant by the linear operator G,; the
modeling error will be characterized by an additive
nonlinear operator G, .

We consider areference input and input disturbance,
because both can be treated in a consistent fashion.

The nominal and the true one-degree-of-freedom
loops are shown in Figure 19.1.
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Figure 19.1: True and nominal control loops
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The Effect of Modeling Errors

To ssmplify the notation, we begin by grouping the
external signals at the input by defining
dz‘ I = C<7“> -+ dz

Note that this is possible because superposition holds
for the linear part of the loop.



Chapter 19 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

From Figure 19.1 (a), we see that

y = (Go + Ge){u)
u=—-C(y) +d;’

Similarly, for the nominal loop in Figure 19.1 (b) we
have

Yo = _GO<C<90>> + Go(d; />
u, = —Cy,) +d;’
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As usua, we define linear nominal sensitivitiesvia

1
T 14+G(Co))
G
1+ G0<C<o>>

Some simple analysis then shows that the system can
be represented as in Figure 19.2, wherey isthe
difference between the true loop output, y, and the
nominal loop output, y,.
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Figure 19.2: Error feedback loop
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Reintroducing r and d. leadsto thefinal
representation, asin Fgure 19.3.
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Figure 19.3: Equivalent signal loop describing the
effects of modeling errors

r(t)
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In thisfigure, G isthe nonlinear model error. Of
course, when G, happensto be linear, then the above
error model reduces to the error model used earlier to
describe the impact of linear model errors.
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Figure 19.3 is a compact way of depicting the effect
of unmodeled plant nonlinearities on the robustness
and performance of the feedback loop. Stability,
robustness, and performance robustness can be
studied by using this representation.

We will next use the error loop described above to
study the effect of nonlinearities on alinearized
control system design.
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Example 19.1

Consider the nonlinear plant having its state space
model given by

dxl(t) . 3
dt = X9 (t) + (5132 (t))
dx;ft) = —23(t) — 2o (t) + u(t) + 0.1 (21 (£)) *u(t)

y(t) = x1(t)
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Design Based on Linearized Modée}

Assume that alinear controller is designed for this
plant, and also assume that the design has been based
upon asmall-signal linearized model. Thislinearized
model has been obtained for the operating point
determined by a constant input u(t) = u, = 2, and the
(linear) design achieves nominal sensitivities given
by
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The operating point is given by

10 = YQ 2 tli)rglo x1(t) = 1.13 and 20 2 lim xa(t) =0

t—o00

The valuesfor ug, X0, ad X, are then used to obtain
the linearized model G,(s), which is given by

1.13
s? + 3.0s + 1.55

Go(s) =
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To achieve the desired T(s), we have that the
controller transfer function must be given by

T,(s) _ 9682 + 3.0s + 1.55
So(s) ' s(s+4)
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We use SIMULINK to implement the error loop
block diagram shown in Figure 19.3, where S4(S) IS

given by

2
. 1.
Suo(s) = [Go ()] 1T, (5) = 7.96° 1305 T 1.95

s2+4s+9
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A simulation isrun with areference, r(t), which has
amean value egual to 2 and a superimposed sguare-
wave of amplitude 0.3. A pulseisadded as an input
disturbance. Figure 19.4 on the next slide shows the
plant output error, y(t).
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Figure 19.4: Effects of linear modeling of a nonlinear
plant on the performance of linear-based
control design.
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We see from the above plot that, for this example, and
for these particular reference signals and disturbances,
the output error y(t) iIsquite small. Thisindicates
that the design based on the linearized model Is
probably adequate here.



Chapter 19 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

We see from the above example that linear designs
can perform well, at least, on some nonlinear plants,
provided that the nonlinearity is sufficiently small.
However, as performance demands grow, oneis
Inevitably forced to carry out an inherently nonlinear
design. A first step inthisdirection is described in
the next section, where we still use alinear controller,
but adifferent linear controller is chosen at different
operating points.
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Switched Linear Controllers

One useful (engineering) strategy for dealing with
nonlinear systems isto split the state space up into
small regions inside which alocalized linear model
gives a reasonabl e approximation to the response.
One can then design a set of fixed linear controllers -
one for each region. Two issues remain to be solved:

(1) how to know which region oneisin, and
(i) how to transfer between controllers.
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The first problem above is often resolved if there
exists some measured variable that is a key indicator
of the dynamics of the system. These variables can
be used to schedule the controllers. For example, In
high-performance aircraft control, Mach number and
altitude are frequently used as scheduling variables.
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The second problem reguires that each controller run
In a stable fashion regardless of whether it isin
charge of the plant. This can be achieved by the anti-
wind-up strategies described in Chapter 11.
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An alternative architecture for an anti-wind-up
scheme is shown in Figure 19.5. Here, a controller
(C.(9)) is used to cause the ith controller output to
track the true plant input. To describe how this might
be used, let us say that we have k. controllers and that
switching between controllersis facilitated by a
device that we call asupervisor. Thus, depending on
the state of the system at any given time instant, the
supervisor may select one of the k. controllersto be
the active controller. The other k. - 1 controllers will
be in standby mode.
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Figure 19.5: Bumpless controller transfer
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We wish to arrange bumpless transfer between the
controllers as directed by supervisor.

To cope with general situations, we place each of the
standby controllers under separate feedback control,
so that their outputs track the output of the active
controller. Here we use the scheme previously
Illustrated in Figure 19.5.
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In Figure 19.5, u(t) denotesthe active controller
output (this controller is not shown in the diagram),
and C,(s) denotes a standby controller having
reference signal r(t) for the particular plant output
y(t). Inthefigure, C; (s) denotes the controller for
theith controller, C(s). Thus,inasense, C, (s) isa
controller-controller. This controller-controller is
relatively easy to design: the plant in this case iswell
known, because it is actually the ith controller. For
this controller-controller loop, the signals r(t) and y(t)
act as disturbances.
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Pilot Scale Distillation Column Example

To illustrate the use of switched linear control of a
nonlinear plant, we will take the example of a pilot
scale distillation column. A photo is shown, on the
next dlide, of the plant which isin the Department of
Chemical Engineering at the University of Sydney.

The work on multi-model control of this plant was
carried out by Julio Rodriguez as part of his Ph.D.
studies.
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Pilot Binary Distillation Column

5
i
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For this system, 2 linear controllers were fitted to 2
different operating points - see the next dide.



Chapter 19 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

Multiple Model Modelling

The global model can be represented as an LPV
system, givenby x=A(A)x+B(A)u
y=C(A)Xx+D(A)u

0
u
t
P
;J Unknown
A steady state
D sLY. trajectory
0 \ |
nS g
|
. Uit Input Domain
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The performance achieved with asingle fixed linear
controller was then compared with the performance
achieved with a switched linear controller comprising
2 linear controllers designed at 2 different operating
points.
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Results for single linear controller are shown below.
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Results for switched linear controller are shown below.
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Comparing the above two results we see the superior
performance achieved by the switching control law.
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Control of Systems with Smooth
Nonlinearities

When the nonlinear features are significant, the above
switching could lead to a conservative design. If this
IS the case, inherently nonlinear strategies should be
considered in the design. To highlight some
Interesting features of nonlinear problems, we wil
begin by considering a simple scenario in which the
model is both stable and stably invertible. We will
later examine more general problems.
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Static Input Nonlinearities

We will first examine the nonlinear control problem
as an extension of the ideas in Chapter 15.

Basically, we mirror the idea of the “Q” form of all
stabilizing controllers for a stable system. Hisleads
to the nonlinear version of this scheme shown on the
next dlide.
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d;(t) do(t)
Controll
(1 N PECIPN N0
+r\_ Qo) 2 O Plant O L
_________________________ —_i______
Golo) ——>
Q(t)

______________________________________________________

Figure 19.6: IMC architecture for control of (smooth)
nonlinear systems

Note that thislooks like the “Q” controller described
In the linear case - here however, the various
operators may be nonlinear.
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We also recall, from Chapter 15, that, in the linear

case of stable and minimum phase plants, Q(s) was
chosen as
Q(s) = Fq(s)[Go(s)] ™

In the linear case, this leads to the result

y(t) = Folv(t))
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The same basic principle can be applied to nonlinear
systems. In the sequel we describe several methods for

obtaining approximate inverses for nonlinear dynamic
systems.
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Static Input Nonlinearities

The ssmplest situation occurs when the plant has a static
Input nonlinearity, and there is only an output
disturbance; then the nominal model output is given by

y(t) = Go(u(t)) + do(t) = Go(d(w)) + do(2)

Note that static input nonlinearities are quite common in
practice since they correspond to known nonlinear
behaviour of input actuators (e.g. valves, etc.)
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Introducing F, asalinear stable operator of appropriate
relative degree, the approximate nonlinear inverseis
simply obtained in this case by inverting the static
nonlinearity. Thisleadsto:

Qo) = ¢~ (G {Fg(o)))
Hence,
u(t) =671 (G, (Folv(t)))
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We see that the static nonlinear function, ¢, is
cancelled between the control law and the plant.
Hence, the final control loop performance as alinear
loop.

We next consider more complex situations where the
dynamics of the system also contain nonlinear
elements.
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Smooth Dynamic Nonlinearities for
Stable and Stably Invertible Models

For this class of systems, we again usethe IMC
architecture on the next slide. The parallel mode! is
easlly constructed. However, some attention needs to
be focussed on the approximate inverse required in
the function Q{°).
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Figure 19.6: IMC architecture for control of (smooth)
nonlinear systems
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Approximate Inversion for Models
Having Stable Inverses

We consider a plant having a nominal model of the
form

|I>
<9

px(t) “lt)

y(t) = h(x)

Werecall that in the linear case that to develop an
approximate inverse, it was necessary to know the

relative degree. The nonlinear version of thisideais
given in the next dlide.

= f(z) + g(z)u(t)
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Nonlinear Relative Degree

Definition 19.1: Therelative degree of the system is
the minimum value N such that if we differentiate

the system output 77 times then the input appears
explicitly, i.e. we have

py(t) = By(x) + ay(z)u(?)

where a,(x) Is not identically zero.
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Example 19.2

Consider a system having the model
pz1(t) = —21(t) — 0.1(w2(t))”
pra(t) = =211 (t) — 3wa(t) — 0.125(22(8))” + [1 + 0.1(x1(t))2] u(?t)
y(t) = w1(t)
Then, If we compute the first- and second-time
derivatives of y(t), we obtain

py(t) =pz1(t) = —z1(t) — 0.1(wa (1))’
py(t) =1.421(t) + 0.622(t) + 0.125(t)* + 0.2525(t)"
— [0.2 4 0.02z1 (¢)?] u(t)
from which we see that the relative degree of the
system is equal to 2.
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Note that, for the system

pa(t) 2 W () 4 glault)

y(t) = h(x)
having relative degree 1, we have that, if the ith
derivative of y(t),i=0, 1, 2, ...n, takesthe form

ply(t) = Bi(z) + ai(z)u(t),
then a;(x) =0 for1=0,1,2, ..., n-1.
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Consider now the operator polynomial p(2)=>".pip";
then we see that p(0)y(t) can be expressed as

where
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Final Construction of the
Approximate Inverse

The approximate inverse for the plant isfinally obtained
simply by setting p(o)y(t) equal to v(t). Thisleads (after

changing the argument of the equation) to the following

result for u(t):

u(t) = (a(z))  (v(t) = b(z)) = Q(v)
Substituting this into the original model shows that the
end result of using this control law Isthat the output
satisfies.

—1

p(p)y(t) = v(t) <= y(t) = [p(p)] (V)

Note that, to obtain a perfect inverse at d.c., we set p, = 1.
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The control strategy described above is commonly
known as input-output feedback linearization, because
It leads to alinear closed-loop system from the input
v(t) to the output y(t).

Actually, we see that the final closed loop has only
denominator dynamics (i.e. y(t)=7 ;). Thus, the
control law has cancelled the numerator dynamics of
the plant. Hence a mgjor restriction on the use of this
method is that the system must be stably invertible (i.e.

have stable numerator dynamics).
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A remaining issue is how to implement Q{) because

It depends on the plant state, which is normally
unavallable. Following the same philosophy asin the
linear case, we can estimate the state by means of a
nonlinear state observer. For the moment, we are,
assuming that the plant is open-loop stable, so we can
use an open-loop observer. An open-loop observer is
driven only by the plant input u(t). Itisbasically an
open loop model of the system and can be represented
as shown on the next dide, where o' denotesthe
Integral operator.
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Figure 19.7: Nonlinear (open loop) observer
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With this observer, we can build the Q block, using
the feedback linearization scheme. Thisleadsto the
final implementation of Q as shown on the next slide.

Here, the observer is represented by the block |abelled
O.
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Figure 19.8: Implementation of the Q block

[a(o)] ™
A
b{o) | O |=

We next illustrate how we can put all of these ideas
together to design a feedback control law for a system
that is both stable and stably invertible.
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Example 19.3

Consider the nonlinear plant having a state space
model given by

dxl(t) . 3
Jt = Qfg(t) -+ (Zl?g(t))
dx;t(t) = 200(£) — 3wa(t) + ult) + 0.1(x1(8)) ult)

y(t) = z1()
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Differentiating the plant output we see that

dCIZ‘Q( )

py(t) = z2(t) + (z2(1))”
)

py(t) = (1 +3(z2(t)*) —
— (14 325(t)) (2x ( ) + 3x2(t)) + (1 + 3(z2(2))) (1 + 0.1(z1(¢))*)u(?t)

Thus the system has relative degree 2.
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We now choose
p(p) = (p* +4p+9)/9

we then obtain a(x) and b(x) as

(1+3(22(t))?)(1 4 0.1(z+1(¢))?)

9
T () 4+ @a(t) = 5(2a(t))” — 621 (£)(2a(1))?
9

a(r) =
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The control loop can be implemented as in Figure
19.6 with the nonlinear operator Q{°) implemented as

below:

b{o)

Figure 19.8

O
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To assess the performance of this design, we compare
It with the linear design based upon alinearized plant
model.

1.13
s? 4+ 3.0s + 1.55

We choose an appropriate complementary sensitivity,
Say

Go(s) =
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Which |leads to the following linearized control law:

T,(s) _ 9682 + 3.0s + 1.55
So(s) ' s(s+4)
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The results of the ssmulation are shown below. This
figure shows the superior tracking performance of the
nonlinear design.
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Figure 19.9: Tracking performance of linear (y,) and
nonlinear (y,,) control designs for a
nonlinear plant
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Example 19.4 (pH neutralization)

PH control is an extremely difficult problem in
practical situations, because of the large dynamic
range needed in the controller.

To deal with thisissue, it is often necessary to make
structural changes to the physical setup - e.g., by
providing additional mixing tanks and multiple
reagent valves. The interested reader isreferred, for
Instance, to the extensive discussion of this problem
on the web page for the book.
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To briefly summarize, we note that all reagent values
are nonlinear (i.e. they contain deadzones, hysteresis,
etc.)

| —

>

Reagent Control Value

( Non-ideal !)
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These nonlinear effects in the control values lead to
control difficulties. We briefly discuss this below.
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Problem (Actuator Ranging)

Control valve large enoughto go frompH 11 - 7

10* change inion concentration

1% error in valve = 102 change in ion concentration

Final pH error 7+2 !
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Control System Design (Issues:)

Thus, multiple valves are needed to achieve desired
accuracy.
Assume valves 5% accuracy

11 - 9.6 <1(7) A

0683 < 5° > 3stages

7.3
83 - 7 67
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Also, we can match the errors arising from valve
nonlinearities to errors arising from input variations
by mixing in tanks of different sizes.

Tank 3 Tank 2 Tank 1
s (Large)  (Medium) (Small) Input
Soectral Density = ‘ == ) q
| | | > )
w a)l
. 1 a)l W
400 20
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Final Design
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Chapter 19

Simulated Results
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In the sequel we take the above practical 1ssues
concerning valve imperfections for granted. |nstead,
we will focus on the design of the control law for one
of the mixing tanks focusing on the inherent
nonlinearity in the dynamics.

The key Issues are:
(1) abilinear dependence of flow and concentration;

(1) pH is measured on a highly nonlinear (logarithmic)
scale.
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Simplified Model for pH
Neutralization

From elementary mass-balance considerations, an
appropriate state space model for pH neutralization of
the strong-acid-strong-base type is given by (We also
Include a lag on the measurement):

deot) _ ) (o)) + + 2 (e +d() = (1))

(Po(t) — P (1))

Notice the two nonlinear effects mentioned above are
captured in this model.
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The relative degree of this nonlinear system is 2 (except
when ¢, = c,). In practice, this point of singularity can
be avoided by appropriate choice of c,,.

We choose
p(p) = aBp® + (a+ B)p + 1

An appropriate inverse is then obtained, if we choose

__VIn(Q0) e q(ci — co(t))
M) = Bleg(e) =y Y (o + A0 = po0) + %

The implementation of this inverse requires that ¢, and
P, be replaced by their estimates, ¢, and p,which we
obtain by using a nonlinear observer.
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The final performance of the feedback linearizing control
law 1S shown below:

Time [s]

Figure 19.10: pH control by using a nonlinear control-
design strategy - the effluent pH (thick
Ine) and measured pH (thin line) are
shown.

pH
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Notice that the final result exhibits linear performance
due to the use of the feedback linearization design

strategy.
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Disturbances

In the above designs we have focused primarily on
the response to reference inputs. However, In
practice, there will always be disturbances and,
Indeed, these are often the main reason for doing a
control system design in the first place.

We thus briefly consider how we might (slightly)
modify the above designs to account for input or
output disturbances.
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Disturbance Issues in Nonlinear
Control

We have seen in Chapter 8, that disturbances need
special attention in control-system design. In
particular, we found that there were subtle issues
regarding the differences between input and output
disturbances. Inthe nonlinear case, these same issues
arise, but there is an extra complication arising from
nonlinear behavior. The essence of the difficulty Is
captured in Figure 19.11.
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Figure 19.11: Nonlinear operators

S ) ﬁ“
+ Cc1 + C2
9 i)—> flo) —
b—> (o) + b +

The output of these two systems are different because
superposition does not hold for nonlinear operators.
Thisimplies, amongst other things, that different
strategies may be needed to deal with input or output
disturbances).
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(1) Input disturbances

Here, we can operate on the measured plant output,
y'(t) and u(t) to estimate d;(t), then cancel this at the
Input to the plant by action of feedback control. We
will employ feedback linearization to implement the
approximate inverses needed to implement this basic
Idea. Thisleadsto the strategy illustrated on the next
dide.
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Figure 19.13: Control strategy for input disturbances
Hpa =[Gy < Ga<e>>]"

d;(t) ‘
r(t) + o~ ) JF_» y(t) y'(t)
T + |

|
()
-/

Note H,_, can be evaluated by feedback linearization
methods.
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Note that the choice of the filter F isimportant. It
Serves two purposes:

() toavoid an algebraic loop;

(1) to speed up the disturbance rgection for input
disturbances (asin thelinear case).
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(1) Output disturbance

Here we can operate on the measured plant output,

y (t) and u(t) to estimate dy(t), which is combined
with the reference r(t) and passed through an
(approximate) inverse for G (o) so asto cancel the
disturbance and cause y(t) to approach r(t). Thisleads
to the strategy illustrated on the next slide.
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Figure 19.14: Control strategy for output disturbances
H =Gt
H,=G.?!
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The reader can verify that, in the linear case, one can
commute the various inverses around the loops Iin
Figures 19.13 and 19.14 to obtain (essentially)
Identical results. However, thisrelies on
superposition which does not hold in the nonlinear
case.
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Example 19.5

We consider the pH problem again.

We assume one mixing tank and we ignore the lag on
the output measurement.

A schematic of the system is shown on the next dlide,
together with the model.
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Example: pH Neutralization

Influent
iplant runofT)
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We assume an input disturbance and use the control
strategy Illustrated in Figure 19.3.

We use two different choices for the filter F;

(1) Fi(s)=2; [Thisfilter isasmall time constant
filter a|med simply at avoiding an algebraic loop.]

i) F,(s)=-"" [Thisfilter contains numerator
. (13+1)?

dynami cs almed at approximately cancelling the
slow dynamics of the plant.]
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Input disturbance design: the effect of an appropriate
choice of the F filter.

di(t) 1
o [, ot L PRI F 1 (S) =
- +
N

78 + 1
)
® I3 ( ) L fl s+ 1
2 2
(rs+1)
8
75
7_
L65
sl — with filter F_
___ with filter F,
551
5 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

time [s]
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From the previous slide, we see that the choice of the
filter F(s) makes a significant difference to the
transient associated with input disturbance rejection.
Thismirrors similar observations made in the linear

case.
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Next we compare the design for input disturbances
(Figure 19.3) with the design for output disturbances
(Figure 19.4). The next slide shows 4 plots

- 2 correspond to the case when the disturbance
appears at the point it was designed for

- theother 2 plots correspond to the case when
the disturbance is not injected at the design point
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Input disturbance response Output disturbance response
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This example highlights the fact that, in nonlinear
systems, certain linear insights no longer hold,
because the principle of superposition is not valid.
Thus, particular care needs to be exercised. We have
seen that input and output disturbances need to be
carefully considered and that design should (in
principle) be targeted at the correct disturbance
Injection point. Thisisall part of the excitement
associated with the control of nonlinear systems.
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More Genera Plants with Smooth
Nonlinearities

For ssmplicity, the discussion above has focused on
plants that are both stable and stably invertible. We next
examine briefly the more general situation. By analogy
with the linear case, one might conceive of solving the
general problem by a combination of a (nonlinear)
observer and (nonlinear) state-estimate feedback. For
example, we found in the linear case that the closed-loop
poles are ssmply the union of the dynamics of the
observer and state feedback, considered separately.
Unfortunately, this does not hold in the nonlinear case
where, inter alia, there will generally be ...
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Interaction between the observer and state feedback.
This makes the nonlinear problem much more difficult.

We proceed to describe some nonlinear designs which
mirror linear ideas. However, these designs have
deficiencies arising from the basic linear philosophy
that underlies their design.
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Nonlinear Observer

We first show how local linearization can be used to
design anonlinear observer.

Consider aplant of the form given in

pa(®) 2 P 1) 1 glzyult
y(t) = h(z)

Say that we are given an estimate X(t) of the state at
timet. We will use linearization methods to see how we
might propagate this estimate.

The linearized forms of the model about X(t), are
respectively ox(t)=f(2)+5 [x(t)-®]+g(Ru(®)+% [x(t)-%(0)]u(t)
y(t)=h(x)+2| [x(t)-%(t)]
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For notational convenience, let

A=3 +5 u(t)
B=9g(%)=5  X(t)
c=2/

D=h(%)-2

R(1)

E=f(%)-2 K(t)
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The linearized model i1s then

pr=Ax+Bu+ E
y=Cxr+D

This suggests the following linearized observer:
PX=AX+Bu+E+J(y-CX-D)

Of course, we must remember

(1) that A, B, C, D, E depend on the point about which the
linearization is made, and

(i1) the systemisreally nonlinear, so the above model isonly
an approximation.
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Substituting for A, B, C, D, E leadsto the following
compact representation for the observer:

PR =T (R)+g(R)u+I[y-h(R)]

Thisresult isintuitively appealing, because the
nonlinear observer so obtained constitutes an open-loop
nonlinear model with (linear) feedback gain multiplying
the difference between the actual observations, y, and
those given by the nonlinear model h(X). (Thisis
generally known as linear output injection).
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Notice that the open loop nonlinear observer used
earlier in this chapter for stable nonlinear plantsis an
example of alinear output injection observer where
the injection gain happens to be taken as zero. More
generally, the injection gain will be designed using a
linearized model as described above.

We illustrate by considering the estimation of liquid
level in 2 coupled tanks as discussed earlier in
Chapter 18. A photo of the system is shown on the
next dlide.
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Coupled Tanks Apparatus
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Recall that the height of water in one tank is measured
and it isrequired to estimate the height of water in the
other tank. In Chapter 18 alinear observer was
designed. Here we design a nonlinear observer using
linear injection as described above. The comparison
of the true and estimated heights is given on the next

side.
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The above results should be compared with the results
obtained with the linear observer as found in Chapter
18 (see the next dlide).
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Comparison with linear observer in Chapter 18.
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A practical application of the nonlinear observer
using linear output injection is described on the next
dide. Heretheideaisto use accurate measurements
of instantaneous rotational speed of an internal
combustion engine to estimate internal cylinder
pressure. Note that the latter variable is difficult to

measure directly but plays an important role in engine
control to minimize pollution.
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The model for the above system is actually very
complex. The next slide shows details of the mode!.
The reader should not try to follow the details of the
model. It issimply intended to illustrate the
flexibility of thistype of observer to deal with rather
complex problems.
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Nonlinear Feedback Design

Next we discuss how one might use the state estimate X
In anonlinear feedback control law.

There are myriad possibilities here. For example, if the
system is unstable but has a stable inverse, then one
could use feedback linearization. If the system does not
have a stable inverse, then the basic feedback
linearization scheme cannot be used. We thus describe a
scheme that is close in spirit to feedback linearization
but which can stabilize certain plants which are not
stably invertible.
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Generalized Feedback linearization
for Nonstability-Invertible Plants

We recall that the feedback-linearization scheme in
essence brings p(o)y(t) to the set point signal v(t)
where p(p) isadifferential operator of degree equal to
the relative degree of the nonlinear system. A
drawback of the scheme, however, was that it
cancelled the zero dynamics and hence required that
the system have a stable inverse.
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We note that the basic feedback-linearization scheme
achieves

p(p)y(t) = v (1)

However, adifficulty in the nonstably-invertible case
IS that the corresponding input will not be bounded.
By focusing temporarily on the input, it seems
desirable to match the above equation by some similar
requirement on the input. Thus, we might ask that the
Input satisfy alinear dynamic model of the form

t(p)ult) = us
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Of course, the above requirements will, in general,
not be simultaneously compatible. This suggests that
we might determine the input by combining them in
some way. For example, we could determine the
Input as that value of u(t) that satisfies alinear
combination of the form:

(1 =) (p)y(t) —v(t)) + (M) (p)ult) —us) =0

We call the resultant control policy:
Generalized Feedback Linearization
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To develop the control law defined above, we
introduce a dummy input U (t) defined by

U(p)u(t) = u(t)

Say that ((,0) has degree h, and that the nonlinear
system has relative degree m. Then the nonlinear
system between u(t) and y(t) will have relative
degree n+h. Hence, If we use and (n+h) degree
operator, p(,), then p(p)y(t) will depend explicitly on
u(t). Hence, we can write

p(p)y = b(z) + a(z)u



Chapter 19 ©Goodwin, Graebe, Salgado, Prentice Hall 2000

Substituting INto (1 — M) (p(p)y(t) — v(t)) + (A (L(p)u(t) — us) =0
gives the following nonlinear feedback control law:
(1= A) (v — b) + Aus

(1 —=XNa+ A
This control law does not cancel the zero dynamics
unless A=0. Clearly for A - 0, the scheme reducesto the
feedback-linearizing control law and for A - 1, u(t)
becomes the open-loop control policy ((p)u(t) = u..
Because when A - 1, the control law becomes open |oop,
then it follows that one class of systems that this scheme
will handleis all open-loop stable nonlinear systems

whether or not they are stably invertible.

u =
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For the case of stable plants, we can use an open loop
observer. Thisleads, finally, to the feedback structure
shown on the next dlide.
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Figure 19.23. Generalized feedback linearization for
open-loop stable plant
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mnNonlinear feedback control law
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We summarize the idea below - see next two dides
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General Nonlinear Systems

0 We consider general nonlinear systems which are not
necessarily stable nor stably invertible.

0 To handle thistype of system we introduce the Generalized
Feedback linearization (GFL) strategy:

(1- APy - y*) + Y(A)u(t) - u*) =0
0<A<l

p(0) and |(p) are suitable differential operators.

With A =0 werevert to the usua feedback linearization
strategy.
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To develop the control law, define:

I(p)u(t)=u(t)

p(p)y(t)=b(x")+a(x")u(t).

Then:

_(@=-2)(y*(t)=b(x") )+ Au*
U= Daix) +
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Example 19.8

Consider the nonlinear system

j31 = 10.%‘1 — 10562
Ty = 16.92571 — 1625 — 0.1(u — tan™* x3)
Yy = To —+ do

where d, represents a constant output disturbance.

Note that this system is open loop stable but is not
stably invertible.
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(1) The zero dynamics can be evaluated by settingy =0
withd, =0. Thisleadsto

jfl = 10$1

Clearly the above zero dynamics are unstable
showing that the plant does not have a stable inverse.

(2) The system is open loop stable.

(3) We design ageneralized feedback linearizing control
law as described above.
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Check on the failure of feedback
linearization for this example.

The system was ssimulated with A =0 and () = 1.
This corresponds to the (basic) feedback linearization
control law. We do not expect that thiswill work
here because the system does not have a stable
Inverse. Indeed, as shown on the next dlide the input
blows up when we test the scheme.Note that the
output response follows the desired trajectory,
however, the input grows without bound. The latter

outcome is aresult of the nonstable invertibility of the
system.
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Figure 19.24: Smulation of basic feedback-
linearization scheme
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Next we simulate the generalized feedback
linearization scheme for different values of A (see
next slide)
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Figure 19.25 Smulation of the generalized feedback-
linearization scheme
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Note that as A decreases, so the response becomes
faster and the undershoot increases. Of course, there

Isalower limit of A consistent with u remaining
bounded.

We thus see that the Generalized feedback
linearization scheme appearsto have led to a
satisfactory solution in this case.

Of course, this system was (at |east) open loop stable.
We next consider an example which is both open loop
unstable and nonstably invertible.
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We begin by assuming that the full state is measured.
The results are shown on the next dide.
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General Nonlinear Systems

Example of the application of the GFL strategy assuming
complete state knowledge:

Ci?l - 10%1 - 105132
iy = 9.92; — 10xs + 0.125 + 0.1u

Yy =22

ep response:

=
ol
T

Using:

=
T

plant output

p(p) = 0.1p* +0.4p + 1
l(p) =—-41p+1

o
o

A=34-10"% 0

time [s]
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Finally, we use a nonlinear observer of the type
described in Section 19.8.1. Note that we also use the
observer to estimate the disturbance state which we
assume here to be a constant input disturbance.
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To achieve integral action with the GFL strategy, we
estimate the disturbance using a nonlinear observer.

Model including input disturbance:

£(t) = f(z) + g(x)(u(t) + di(1))
y(t) = hx)

di(t) =0
Observer designed via linear output injection:
i(t) = f(&) + g(@)[u(t) + di ()] + Jly(t) = 1(@)]
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This leads to the Generalized Feedback Linearization
scheme shown on the next dide.
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|nput disturbance case:

di(t)
u(t) + Nonlinear y(t) -
-+ Plant
Nonlinear
o T S
Observer
—  di(t)

[ xl(t) v "%(t)

1 _ (1= A){r—b)+Au,
iy [~ | Y= —T=xNatr

Nonlinear feedback control law
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The above scheme has been designed assuming an
Input disturbance. However, referring back to Section
19.8, werecall that for nonlinear systems, one needs
(in principle) to treat input and output disturbances
differently. Thus, on the next slide, we suggest a
nonlinear observer that might be used when the
system is perturbed by a constant output disturbance.
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Model including constant output disturbance:
#(t) = flx) + g(w)u(t)
y(t) = h(z) + do(2)
d,(t) =0
Corresponding observer designed vialinear output
Injection
é‘f(t) = [(&) + g(@)u(t) + J1 (y(t) — M(2) — d,)
do(t) = J2(y(t) = h(&) = dy )
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We present four ssmulations below for this unstable,
nonstable, invertible example under different
scenarios and different disturbances.
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We see that the generalized feedback linearizing
control law has performed well when the disturbance
Injection point is correctly modelled. Less
satisfactory performance (indeed instability) results
when the input disturbance point is incorrectly
modelled.
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Anti-windup Protection

Finally, we ask avery hard question - What should we
do if the input reaches a saturation limit? Actually,
the form of nonlinear controller that we have
described above it isimmediately compatible with the
state space anti-windup scheme described in Section
18.9. An ad-hoc extension of thisideato the
nonlinear case is shown below.
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0 Prevent the integrator from winding up by using an
appropriate ad-hoc anti-windup strategy.

u(t) | y(1)

Plant >

Y
Y

A

Observer

P
Y
Y

(t)
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We repeat the earlier ssmulation but here we saturate
the input. The results are shown on the next slide.
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The implementation of the GFL strategy using state
observers allows the inclusion of aform of anti-
windup protection.

2.5

plant output

Nominal response— (1) |
No anti-windup === (2)
With anti-windup===_(3)
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We see that this nonlinear controller appears to work
well for this difficult system which has the following
features:

- open loop unstable
- nonstably invertible
- Input saturations limit
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All of the designs described above have been
essentially based on engineering considerations. Of
course, we have not provided aformal proof of
stability of the resulting system. Thisisamajor
drawback. Hence, if the reader wanted to use these
kinds of schemes in practice, then we would suggest
that extensive simulations should be carried out prior
to final Implementation.
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Analysis of Stability for Nonlinear
Systems

Having to test stability via extensive simulationsis
somewhat unsatisfactory. Fortunately in some cases,
It Is possible to analyze stability using formal
methods. The book describes two methods.

o Lyapunov Stability Analysis
1 Function Space Stability Analysis

We will focus here on the Lyapunov approach.
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Lyapunov Stability

The basic idea of Lyapunov stability of to show that
there exists a positive definite function (similar to a
measure of total energy) of the statesthat is
decreasing along trajectories of the system. The
positive definite function is usually called a Lyapunov
function.

L yapunov functions can be used to assess different
types of stability. We formally define the concept of
Global Asymptotic Stability below:
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Definition: Consider a discrete-time system of the form
wlk+1) = f(z[k]);  alko] =z,

We say that the system is globally asymptotically stable,
If, for all initial states x[k,] and for any [1> 0, there
existsa T such that |[x[k, + T]|| < U, foral t=T.

(Basically, this states that given any initial condition, if
we wait long enough, the size of the state will fall below
any given number &.)

We next show how a Lyapunov function can be used to
assess Global Asymptotic Stability.
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Formal Requirements on a
L yapunov Function

If we can find afunction V(x) O R (a Lyapunov
function) having the following properties:

(1) V(X) isapositive definite function of x: 1.e. V(X) > 0 for
all x# 0, V(X) is continuous and is a strictly increasing
function of [x|, and V(x) isradially unbounded - i.e.,
IV(X)| — oo for al |[x|| — .

(11)V is decreasing along trajectories - that is,
—(V(f(x)) —V(x)) is positive definite

We then have, the following theorem, due to Lyapunov.
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Theorem 19.1: (Lyapunov Sability). The solution of
zlk+1] = f(=[k]);  z[k] ==z, IS QloObally asymptotically
stable if there exists a Lyapunov function for the
system satisfying properties (i) and (i) above.

Proof: See the book.
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An application of Lyapunov methods will be givenin
Chapter 23, where we use this approach to prove
stability of ageneral nonlinear-model predictive-
control algorithm.

The basic idea of Lyapunov stability can also be used
to determine ssimple stability results that hold in
special cases. We illustrate this below by describing
tools for assessing stability of a control loop
containing a single static (memoryless) nonlinearity.
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Circle Criterion

The Lyapunov approach to nonlinear stability isa
powerful tool. The main difficulty, however, isin
finding a suitable Lyapunov function. One class of
problems for which an e egant solution to the issue of
nonlinear stability existsisthat of afeedback system
comprising alinear dynamic block together with
static (or memoryless) nonlinear feedback. Thisis
often called the Lur’ e problem - see Figure 19.21.
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Figure 19.21: The single-input single-output Lur’e
problem

u®=0 __ &)

4,0_, X(t)=Ax(t)+BE(t)
. y(t)=Cx(t)+DE(t)
L o(ty(t) L

To analyze this situation, we can use a very neat result
(known asthe circle criterion). To provethisresult, we
will utilize a particular Lyapunov function that is
matched to this special problem. We also need the
technical result given on the next dlide.

y(t) ‘
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Kaman-Y acubovich Lemma

Lemma 19.1: Given astable single-input single-output
linear system, (A, B, C, D), with (A, B) controllable,
and given areal vector, v, and scalars y=0and € > 0,
and a positive definite matrix Q, then there exists a
positive definite matrix P and a vector g such that

AP+ PA =-qq'- £&Q
and
PB-u=A"4q

If and only if £ issmall enough, and the scalar function
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H(s)=v+20"(sI—A)"'B
satisfies

R{H(jw)} >0, for all w
where [1{ -} denotesthereal part.

We can now state the following stability result:
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Circle Criterion

Theorem 19.2: Consider the Lur’ e system illustrated
In Figure 19.21. Provided

(i) thelinear system X = AX+ B¢, y =CX isstable,
completely controllable, completely observable, and has a
Nyquist plot that lies strictly to theright of —, k>0, and

(i1) the nonlinearity ¢(t, y) belongs to the sector (0, k) in the
sense that
0 <yodt,y) <ky* VYyeR,Vt>0
then the feedback |oop of Figure 19.21 is globally
asymptotically stable.

Proof: Seethe book (uses the Kalman-Yacubovich
Lemma together with a Special Lyapunov function)
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The previous result can be extended to the case when the
nonlinearity liesin a sector (ky, k) in the sense that

k1y? <wyo(t,y) < kay?

For example, we have the following corollary for the
case 0 <k; <k,:

Corollary 19.1: Consider the Lur’e system illustrated in
Figure 19.21 with G(s) = C(sl - A)1B + D. Provided ...
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(i) Thelinear system Xx=Ax+B¢,y=Cx hasn.unstable
poles, is completely controllable, completely observable
and has a Nyquist plot that does not enter a circle of center
tarke) andradius 3ot but encirclesit n times
counterclockwise. Then, theloop is globally asymptotically

stable.
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We illustrate the application of the above ideato on e
of the systems used earlier to illustrate nonlinear
control system design. Earlier we stated (without

proof) that the system was open loop stable. Here we
establish this fact.
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Example 19.7

Consider the nonlinear system

$.1 = 10.%‘1 — 10:62

Ty = 16.92571 — 1625 4+ 0.1tan™ ' (z3) — 0.1u

Yy— =2

The system can
A =

C —

oe put into the Lur’ e structure, with

[ 10 -10] g_| 0
16.925 —16]’ |01

0 1

p(y) = tan™"(y)

It isreadily seen that o < yo(y) <42

Also, it isreadily verified that the Nyquist plot liesto
the right of the point -1. Stability of the system follows
Immediately from Theorem 19.2.
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Summary

0 So far, the book has emphasized linear systems and
controllers.

0 This chapter generalizes the scope to include various types
of nonlinearities.

0 A number of propertiesthat are very helpful in linear
control are not - or not directly - applicable to the nonlinear
Case.

1 Freguency analysis: The response to a sinusoidal signal is not

necessarily asinusoid; therefore, frequency analysis, Bode plots,
etc., cannot be carried over directly from the linear case.

n Transfer function: The notion of transfer functions, poles, zeros,
and their respective cancellation is not directly applicable.
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1 Sability becomes more involved.

o Inversion: It was highlighted in Chapter 15, on controller
parameterizations, that, regardless of whether the controller contains
the inverse of the model as a factor and regardless of whether one
Inverts the model explicitly, control is fundamentally linked to the
ability to invert. Numerous nonlinear functions encountered,
however, are not invertible (such as saturations, for example).

1 Superposition does not apply; that is. the effects of two signals
(such as set-point and disturbance) acting on the system individually
cannot simply be summed (superimposed) to determine the effect of
the signal's acting simultaneously on the system.

o Commutativity does not apply.
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0 Asaconseguence, the mathematics for nonlinear control become
more involved, solutions and results are not as complete, and
Intuition can fail more easily than in the linear case.

0 Nevertheless, nonlinearities are frequently encountered and are a
very important consideration.

0 Smooth static nonlinearities at input and output

o are freguently a consequence of nonlinear actuator and sensor
characteristics

o arethe easiest form of nonlinearities to compensate

o can be compensated by applying the inverse function to the relevant
signal, thus obtaining alinear system in the precompensated signals. (Use
caution, however, with points singular such as division by zero, for
particular signal values.)
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0 Nonsmooth nonlinearities cannot, in general, be exactly
compensated or linearized.

0 This chapter applies a nonlinear generalization of the affine
parameterization of Chapter 15 to construct a controller that
generates a feedback-linearizing controller if the mode! is
smoothly nonlinear with stable inverse.

0 Nonlinear stability can be investigated by using a variety of
technigues. Two common strategies are
1 Lyapunov methods,
1 function-space methods.
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0 Extensions of linear robustness analysis to the nonlinear
case are possible.

0 There also exist nonlinear sensitivity limitations that mirror
those for the linear case.



