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In the case of SISO control, we found that one could
use a wide variety of synthesis methods.  Some of
these carry over directly to the MIMO case.  However,
there are several complexities that arise in MIMO
situations.   For this reason, it is often desirable to use
synthesis procedures that are in some sense automated.
This will be the subject of the next few chapters.
However, before we delve into the full complexity of
MIMO design, it is appropriate that we pause to see
when, if ever, SISO techniques can be applied to
MIMO problems directly.
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We will study
❖ decentralized control as a mechanism for directly

exploiting SISO methods in a MIMO setting

❖ robustness issues associated with decentralized control.
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Completely Decentralized Control

Before we consider a fully interacting multivariable
design, it is often useful to check  on whether a
completely decentralized design can achieve the
desired performance objectives.  When applicable,
the advantage of a completely decentralized
controller, compared to a full MIMO controller, is
that it is simpler to understand, is easier to maintain,
and can be enhanced in a straightforward fashion (in
the case of a plant upgrade).
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Readers having previous exposure to practical control
will realize that a substantial proportion of real-world
systems will utilize decentralized architectures.
Thus, one is led to ask the question, is there ever a
situation in which decentralized control will not yield
a satisfactory solution?  We will present several real-
world examples later in Chapter 22 that require
MIMO thinking to get a satisfactory solution.  As a
textbook example of where decentralized control can
break down, consider the following MIMO example.
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Example 21.1

Consider a two-input, two-output plant having the
transfer function

Go(s) =
[
Go

11(s) Go
12(s)

Go
21(s) Go

22(s)

]

Go
11(s) =

2
s2 + 3s + 2

Go
12(s) =

k12

s + 1

Go
21(s) =

k21

s2 + 2s + 1
Go

22(s) =
6

s2 + 5s + 6
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Let us say that k12 and k21 depend on the operating
point (a common situation, in practice).

Operating point 1 (k12 = k21 = 0)
Clearly, there is no interaction at this operating point.
Thus, we can safely design two SISO controllers.  To
be specific, say we aim for the following
complementary sensitivities:

To1(s) = To2(s) =
9

s2 + 4s + 9
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The corresponding controller transfer functions are
C1(s) and C2(s), where

The two independent loops perform as predicted by
the choice of complementary sensitivities.

C1(s) =
4.5(s2 + 3s + 2)

s(s + 4)
; C2(s) =

1.5(s2 + 5s + 6)
s(s + 4)
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Operating point 2 (k12 = k21 = 0.1)
We leave the controller as previously designed for
operating point 1.  We apply a unit step in the
reference for output 1 at t = 1 and a unit step in the
reference for output 2 at t = 10.  The closed-loop
response is shown on the next slide.  These results
would probably be considered very acceptable, even
though the effects of coupling are now evident in the
response.
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Figure 21.1: Effects of weak interaction in control loop
with SISO design
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Operating point 3 (k12 = -1, k21 = 0.5)
With the same controllers and for the same test as
used at operating point 2, we obtain the results on the
next slide.

We see that a change in the reference in one loop
now affects the output in the other loop significantly.
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Figure 21.2: Effects of strong interaction in control
loops with SISO design
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Operating point 4 (k12 = -2, k21 = -1)
Now a simulation with the same reference signals
indicates that the whole system becomes unstable.
We see that the original SISO design has become
unacceptable at this final operating point.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

Pairing of Inputs and Outputs

If one is to use a decentralized architecture, then one
needs to pair the inputs and outputs.  In the case of
an m × m plant transfer function, there are m!
possible pairings.  However, physical insight can
often be used to suggest sensible pairings.
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Relative Gain Array

One method that can be used to suggest pairings is a
quantity known as the Relative Gain Array (RGA).
For a system with matrix transfer function  Go(s), the
RGA is defined as a matrix Λ with the ijth element

where  [Go(0)]ij  and  [Go
-1(0)]ij denote the ijth element

of the plant d.c. gain and the jith element of the inverse
of the d.c. gain matrix respectively.

λij = [Go(0)]ij [Go
−1(0)]ji
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Note that [Go(0)]ij  corresponds to the d.c. gain from
the ith input, ui, to the jth output, yj, while the rest of
the inputs, ul for l ∈ {1, 2, …, i-1, i+1, …, m} are
kept constant.  Also [Go

-1]ij is the reciprocal of the
d.c. gain from the ith input, ui, to the jth output, yj,
while the rest of the outputs, yl for l ∈ {1, 2, …, j-1,
j+1, …, m} are kept constant.  Thus, the parameter
λij provides an indication of how sensible it is to pair
the ith input with the jth output.
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One usually aims to pick pairings such that the
diagonal entries of  ΛΛΛΛ  are large.  One also tries to
avoid pairings that result in negative diagonal entries
in ΛΛΛΛ.
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Example

Consider again the system

The RGA is then

Go(s) =




2
s2 + 3s + 2

k12

s + 1
k21

s2 + 2s + 1
6

s2 + 5s + 6




Λ =




1
1 − k12k21

−k12k21

1 − k12k21−k12k21

1 − k12k21

1
1 − k12k21






© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

For 1 > k12 > 0, 1 > k21 > 0, the RGA suggests the
pairing (u1, y1), (u2, y2). We recall from our earlier
study of this example that this pairing worked very
well for k12 = k21 = 0.1 and quite acceptably for
k12 = -1, k21 = 0.5.  In the latter case, the RGA is

Λ =
1
3

[
2 1
1 2

]
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However, for k12 = -2, k21 = -1 we found that the
centralized controller based on the pairing (u1, y1),
(u2, y2) was actually unstable.  The corresponding
RGA in this case is

which indicates that we probably should have
changed to the pairing (u1, y2), (u2, y1).

Λ =
[
−1 2
2 −1

]
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Example 21.3

Quadruple-tank apparatus.
Consider the quadruple-tank apparatus shown on the
next two slides.
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We recall from Chapter 20 that this system has an
approximate transfer function,

The RGA for this system is

G(s) =




3.7γ1

62s + 1
3.7(1 − γ2)

(23s + 1)(62s + 1)
4.7(1 − γ1)

(30s + 1)(90s + 1)
4.7γ2

90s + 1




Λ =
[

λ 1 − λ
1 − λ λ

]
where λ =

γ1γ2

γ1γ2 − 1
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For 1 < γ1 + γ2 < 2, we recall from Chapter 20 that the
system is of minimum phase.  If we take, for
example, γ1 = 0.7 and γ2 = 0.6, then the RGA is

This suggests that we can pair (u1, y1) and (u2, y2).

Λ =
[

1.4 −0.4
−0.4 1.4

]
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Because the system is of minimum phase, the design
of a decentralized controller is relatively easy in this
case.  For example, the following decentralized
controller gives the results shown on the next slide

C1(s) = 3
(

1 +
1

10s

)
; C2(s) = 2.7

(
1 +

1
20s

)
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Figure 21.3: Decentralized control of a minimum-
phase four-tank system
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For 0 < γ1 + γ2 < 1, we recall from Chapter 20 that the
system is nonminimum phase.  If we take, for example
γ1 = 0.43 and γ2 = 0.34, then the system has a NMP
zero at s = 0.0229, and the relative gain array becomes

Λ =
[
−0.64 1.64
1.64 −0.64

]
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This suggests that (y1, y2) should be commuted for
the purposes of decentralized control,.  This is
physically reasonable, given the flow patterns
produced in this case.  This leads to a new RGA of

Λ =
[

1.64 −0.64
−0.64 1.64

]
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Note, however, that control will still be much harder
than in the minimum-phase case.  For example, the
following decentralized controllers give the results
shown on the next slide.

C1(s) = 0.5
(

1 +
1

30s

)
; C2(s) = 0.3

(
1 +

1
50s

)
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Figure 21.4: Decentralized control of a nonminimum-
phase four-tank system
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Robustness Issues in Decentralized
Control

One way to carry out a decentralized control design
is to use a diagonal nominal model.  The off-diagonal
terms then represent under-modelling, in the
terminology of Chapter 3.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

Thus, say we have a model Go(s), then the nominal
model for decentralized control could be chosen as

and the additive model error would be

With this as a background, we can employ the robustness
checks described in Chapter 20.  We recall that a
sufficient condition for robust stability is

where                                      is the maximum singular
value of

Gd
o(s) = diag{go

11, . . . , go
mm(s)}

Gε(s) = Go(s) − Gd
o(s); G∆l(s) = Gε(s)[Gd

o(s)]−1

σ (G∆l(jω)To(jω)) < 1 ∀ω ∈ R

))()(( 1 ωωσ jj oTG∆

).()(1 ωω jj oTG∆
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Example

Consider again the system

Go(s) =




2
s2 + 3s + 2

k12

s + 1
k21

s2 + 2s + 1
6

s2 + 5s + 6



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In this case, the various matrices arising in the
centralized design are

To(s) =
9

s2 + 4s + 9

[
1 0
0 1

]
Gd

o(s) =




2
s2 + 3s + 2

0

0
6

s2 + 5s + 6




Gε(s) =


 0

k12

s + 1
k21

s2 + 2s + 1
0


 G∆l(s) =




0
k12(s2 + 5s + 6)

6(s + 1)
k21(s + 2)
2(s + 1)

0




G∆l(s)To(s) =




0
3k12(s2 + 5s + 6)

2(s + 1)(s2 + 4s + 9)
9k21(s + 2)

2(s + 1)(s2 + 4s + 9)
0



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The singular values, in this case, are simply the
magnitudes of the two off-diagonal elements.  These
are plotted on the next slide for normalized values
k12 = k21 = 1.
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Figure 21.5: Singular Values of G∆1(jω)To(jω)
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We see that a sufficient condition for robust stability
of the decentralized control, with the pairing (u1, y1),
(u2, y2), is that |k12| < 1 and |k21| < 1.  Observe that
this is conservative, but consistent with the
performance results presented earlier.
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Example

Consider a MIMO system with

We first observe that the RGA for the nominal model
Go(s) is given by

G(s) =




1
s + 1

0.25
10s + 1

(s + 1)(s + 2)

0.25
10s + 1

(s + 1)(s + 2)
2

s + 2


; Go(s) =




1
s + 1

0

0
2

s + 2




Λ =
[

1.0159 −0.0159
−0.0159 1.0159

]
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This value of the RGA might lead to the hypothesis
that a correct pairing of inputs and outputs has been
made and that the interaction is weak. We thus
proceed to do a decentralized design leading to a
diagonal controller C(s) to achieve a complementary
sensitivity To(s), where

To(s) =
9

s2 + 4s + 9

[
1 0
0 1

]
; C(s)=




9(s + 1)
s(s + 4)

0

0
9(s + 2)
2s(s + 4)






© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

However, this controller, when applied to control the
full plant G(s), leads to closed-loop poles located at
-6.00, -2.49 ± j4.69, 0.23 ± j1.36, and -0.50 - an
unstable closed loop !

The lack of robustness in this example can be traced
to the fact that the required closed-loop bandwidth
includes a frequency range where the off-diagonal
frequency response is significant.
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Feedforward Action in Decentralized
Control

Although it usually will not aid robust stability, the
performance of decentralized controllers is often
significantly enhanced by the judicious choice of
feedforward action to reduce coupling.  Consider, for
example, the output response at port #1, i.e.

and, for simplicity, we consider only the effect of the jth

loop on the ith loop.  We can then apply the feedforward
ideas developed in Chapter 10 to obtain the architecture
shown on the next slide.

Y1(s) = G11(s)U1(s) +
m∑

i=2

G1i(s)Ui(s)
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Figure 21.6: Feedforward action in decentralized control

++++
Yi(s)

Uj(s)

U ′
i(s) Ui(s)

Gii(s)

Gji
ff (s)

Gij(s)
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The feedforward gain               should be chosen in such
a way that the coupling from the jth loop to the ith loop is
compensated in a particular, problem-dependent
frequency band [0  ωff] - i.e.

This can also be written as

from which we observe the necessity to build an inverse.
Hence all of the issues associated with building inverses
discussed in earlier chapters arise again.

)( sG ji
ff

Gji
ff (jω)Gii(jω) + Gij(jω) ≈ 0 ∀ω ∈ [0 ωff ]

Gji
ff (jω) ≈ −[Gii(jω)]−1Gij(jω) ∀ω ∈ [0 ωff ]
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Example 21.6

Consider again the system

with k12 = -1 and k21 = 0.5.  We recall the results
presented earlier for this case.

Go(s) =




2
s2 + 3s + 2

k12

s + 1
k21

s2 + 2s + 1
6

s2 + 5s + 6



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We see that there is little coupling from the first to the
second loop, but relatively strong coupling from the
second to the first loop.  This suggests that
feedforward from the second input to the first loop
may be beneficial.  To illustrate, we choose             to
completely compensate the coupling at d.c., i.e.
is chosen to be a constant                   , satisfying

)( sG ji
ff

)( sG ji
ff

α=)( sG ji
ff

αG11(0) = −G12(0) =⇒ α = 1
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The resulting modified MIMO system can be seen to
be modeled by

where

Y (s) = Go(s)
[
U1(s)
U2(s)

]
= Go(s)

[
1 1
0 1

] [
U ′

1(s)
U2(s)

]
= G′

o(s)
[
U ′

1(s)
U2(s)

]

G′
o(s) =




2
s2 + 3s + 2

−s

s2 + 3s + 2
0.5

s2 + 2s + 1
6.5s2 + 14.5s + 9

(s2 + 2s + 1)(s2 + 5s + 6)



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The RGA is now ΛΛΛΛ = diag(1, 1) and when we
redesign the decentralized controller, we obtain the
results presented on the next slide.
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Figure 21.7: Performance of a MIMO decentralized
control loop with interaction feedforward
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The above examples indicate that a little coupling
introduced into the controller can be quite helpful.
This, however, raises the question of how we can
systematically design coupled controllers that
rigorously take into account multivariable interaction.
This motivates us to study the latter topic, which will
be taken up in the next chapter.  Before ending this
chapter, we investigate whether there exist simple
ways of converting an inherently MIMO problem to a
set of SISO problems.
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Converting MIMO problems to
SISO Problems

Many MIMO problems can be modified so that
decentralized control becomes a more viable (or
attractive) option.  For example, one can sometimes
use a precompensator to turn the resultant system into
a more nearly diagonal transfer function.
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To illustrate, say the nominal plant transfer function
is Go(s).  If we introduce a precompensator P(s), then
the control loop appears as in the figure below.

         Figure 21.8: Feedback control with plant 
precompensation

Go(s)P(s)

C(s)

Cp(s)
+

−



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

The design of Cp(s) can then be based on the
equivalent plant.

H(s) = Go(s)P(s)
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Several comments are in order regarding this strategy:
(i) A first attempt at designing P(s) might be to approximate

Go(s)-1 in some way.  For example, one might use the d.c.
gain matrix Go(0)-1 as a precompensator, assuming this
exists.

(ii) If dynamic precompensators are used, then one needs to
check that no unstable pole-zero cancellations are
introduced between the compensator and the original plant.

(iii) Various measures of resultant interactions can be
introduced.  For example, the following terminology is
frequently employed in this context.
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Dynamically decoupled
Dynamically decoupled:  Here, every output
depends on one and only one input.  The transfer-
function matrix H(s) is diagonal for all  s.  In this
case, the problem reduces to separate SISO control
loops.

Band-decoupled and statically decoupled systems:
When the transfer-function matrix H(jω) is diagonal
only in a finite frequency band, we say that the
system is decoupled in that band.  In particular, we
will say, when H(0) is diagonal, that the system is
statically decoupled.
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Triangularly coupled systems:  A system is
triangularly coupled when the inputs and outputs can
be ordered in such a way that the transfer-function
matrix H(s) is either upper or lower triangular, for all
s.  The coupling is then hierarchical.
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Industrial Case Study
(Strip Flatness Control)

An an illustration of the use of simple
precompensators to convert a MIMO problem into
one in which SISO techniques can be employed, we
consider the problem of strip flatness control in
rolling mills.  Actually, very similar issues arise in
many other problems including paper making and
plastic extrusion.

The next slide shows a typical rolling stand
configuration.
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Typical rolling stand configuration



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

What is flatness in a Rolling Mill?

If rolling results in a nonuniform reduction of the
strip thickness across the strip width, then a residual
stress will be created, and buckling of the final
product may occur.  A practical difficulty is that
flatness defects can be pulled out by the applied strip
tensions, so that they are not visible to the mill
operator.  However, the buckling will become
apparent as the coil is unwound or after it is slit or cut
to length in subsequent processing operations.
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Source of Flatness Problems

There are several sources of flatness problems, including
the following:

◆ roll thermal cambers
◆ incoming fed disturbances (profile, hardness, thickness)
◆ transverse temperature gradients
◆ roll stack deflections
◆ incorrect ground roll cambers
◆ roll wear
◆ inappropriate mill setup (reduction, tension, force, roll

bending)
◆ lubrication effects.
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On the other hand, there are strong economic motives
to control strip flatness, including the following:

◆ improved yield of prime-quality strip
◆ increased throughput, due to faster permissible

acceleration, reduced threading delay, and higher rolling
speed on shape-critical products

◆ more efficient recovery and operation on such
downstream units as annealing and continuous-process
lines

◆ reduced reprocessing of material on tension-leveling
lines or temper-rolling mills.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

Control Options

In this context, there are several control options to
achieve improved flatness.  These include roll tilt,
roll bending, and cooling sprays.  These typically can
be separated by preprocessing the measured shape.
Here, we will focus on a particular aspect of the
cooling spray option.  Note that flatness defects can
be measured across the strip by using a special
instrument called a Shape Meter.  A typical control
configuration is shown on the next slide.
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Figure 21.9: Typical flatness-control set-up for rolling
mill



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

In this configuration, numerous cooling sprays are
located across the roll, and the flow through each
spray is controlled by a valve.  The cool water
sprayed onto the roll reduces the thermal expansion.
The interesting thing is that each spray affects a large
section of the roll, not just the section directly
beneath it.  This leads to an interactive MIMO
system, rather than a series of decoupled SISO
systems.
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The thermal properties of the roll can be modeled
using basic laws of physics.  This leads to a partial
differential equation, however, this can be discretized
to give a finite dimenional model.  Such a model can
then be used as a calibration model  to test control
system design strategies.

The main components of the heat flow inside a
typical roll are shown on the next slide.
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Internal roll heat flows
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For the purpose of control system design, it suffices
to use a simpler model.  Such a model can be
developed by approximating the observed behavior
of the more complex calibration model.  A key
feature of the observed behavior is that a single
cooling spray (one of the actuators) effects the radial
diameter of the roll and hence the measured strip
shape over a extended spatial area.  This is
diagrammatically shown on the next slide.
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Action of single spray

Effect of a single spray on roll 
diameter
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Based on the above discussion, a simplified model
for this system (ignoring nonlinear heat-transfer
effects, etc.) is shown in the block diagram on the
next slide, where  U  denotes a vector of spray valve
positions and Y denotes the roll-thickness vector.
(The lines indicate vectors rather than single
signals).
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Figure 21.10: Simplified flatness-control feedback loop

+

−
C(s)

U
M

1

τs + 1

Y



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 21

The sprays affect the roll in a roughly exponential
fashion as described by the matrix  M:

The parameter  α  represents the level of interactivity
in the system and is determined by the number of
sprays present and how close together they are.

M =




1 α α2 · · ·
α 1

α2 . . .
...

... 1 α
· · · α 1



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An interesting thing about this simplified model is that
the interaction is captured totally by the d.c. gain
matrix M.  This suggests that we could design an
approximate precompensator by simply inverting this
matrix.  This leads to

M−1 =




1
1 − α2

−α

1 − α2
0 · · · 0

−α

1 − α2

1 + α2

1 − α2

...

0
. . . 0

...
1 + α2

1 − α2

−α

1 − α2

0 · · · 0
−α

1 − α2

1
1 − α2



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Using this matrix to decouple the system has a nice
physical interpretation.  Namely, it amounts to turning
off surrounding sprays when a spray is turned on.  This
makes sense physically since we are preventing the
spread of the cooling effect by use of adjacent sprays.
The essential idea of the decoupling control strategy is
shown on the next slide.
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Pictorial representation of coordinated 
use of sprays to decouple control action

Nett shape

ith spray

(i-1)th spray (i+1)th spray
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In summary, we can (approximately) decouple the
system simply by multiplying the control vector by the
appropriate inverse.  This set-up is shown in the block
diagram on the next slide.
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Figure 21.11: Flatness control with precompensation
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The nominal decoupled system then becomes simply
                    With this new model, the controller

can be designed by using SISO methods.  For example a
set of simple PI controllers linking each shape meter with
the corresponding spray would seem to suffice.  (We
assume that the shape meters measure the shape of the
rolls perfectly).

This idea is routinely used in this particular application
and leads to excellent results.  (Of course, the practical
problem has many other features that we leave aside so
as not to distract from our key point here).

.)( )1(
1
+= sdiagsH τ
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Actually, control problems almost identical to the
above can be found in many alternative industrial
situations where there are longitudinal and traverse
effects.  Examples are paper making and plastic
extrusion.
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Strip flatness systems of the type (briefly) described
here are available commercially.  The following
slides have been made from pamphlets describing a
commercial system sold by Industrial Automation
Services Pty. Ltd.

www.indauto.com.au
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Impact of MIMO Controller
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Summary
❖ A fundamental decision in MIMO synthesis pertains to the

choice of decentralized versus full MIMO control.

❖ Completely decentralized control
◆ In completely decentralized control, the MIMO system is

approximated as a set of independent SISO systems

◆ To do so, multivariable interactions are thought of as disturbances;
this is an approximation, because the interactions involve feedback,
whereas disturbance analysis actually presumes disturbances to be
independent inputs.

◆ When applicable, the advantage of completely decentralized control
is that one can apply the simpler SISO theory.
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◆ Applicability of this approximation depends on the neglected
interaction dynamics, which can be viewed as modelilng errors;
robustness analysis can be applied to determine their impact.

◆ Chances of success are increased by judiciously pairing inputs and
outputs (for example, by using the Relative Gain Array, RGA) and
by using feedforward.

◆ Feedforward is often a very effective tool in MIMO problems.

◆ Some MIMO problems can be better treated as SISO problems if a
precompensator is first used.
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❖ There are several ways to quantify interactions in
multivariable systems, including their structure and their
strength.

◆ Interactions can have a completely general structure (every input
potentially affects every output) or display particular patterns, such
as triangular or dominant diagonal;  they can also display
frequency-dependent patterns, such as being statistically decoupled
or band-decoupled.

◆ The lower the strength of interaction, the more nearly a system
behaves like a set of independent systems that can be analyzed and
controlled separately.
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◆ Weak coupling can be due to the nature of the interacting dynamics
or to a separation in frequency range or time scale.

◆ The stronger is the interaction, the more important it becomes to
view the multi-input multi-output system and its interactions as a
whole.

◆ Compared to the SISO techniques discussed so far, viewing the
MIMO systems and its interactions as a whole requires generalized
synthesis and design techniques and insight.  These will be the
topics of the following two chapters.


