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Chapter 22

Design via Optimal Control
Techniques



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

In the author’s experience, industrial control system
design problems can be divided into four categories:
1. Relatively simple loops for which PID design gives a 

very satisfactory solution (see Chapters 6 and 7).

2. Slightly more complex problems where an additional 
feature beyond PID yields significant performance 
advantages.  Two key tools that can be used to 
considerably advantage in this context are feedforward 
control (Chapter 10) and the Smith Predictor for plants 
with significant time delays (Chapters 7 and 15).
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3. Systems involving significant interactions but where some 
form of preliminary compensation essential converts the 
problem into separate non-interacting loops which then fall 
under categories 1 and 2 above (Chapter 21).

4. Difficult problems which require some form of computer 
assisted optimization for their solution. (This is the topic of 
the current chapter and Chapter 23).
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As a rough guideline:  95% of control problems fall
into category 1 above;  4% fall into category 2 or 3.
The remaining 1% fall into category 4.

However, the relative low frequency of occurrence of
the problems in category 4 is not representative of
their importance.  Indeed, it is often this 1% of hard
problems where the real benefits of control system
design can be achieved.  They are often the make or
break problems.
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We will emphasize methods for solving these
tougher problems based on optimal control theory.
There are three reasons for this choice:
1. It is relatively easy to understand

2. It has been used in a myriad of applications.  (Indeed, the
authors have used these methods on approximately 20 
industrial applications).

3. It is a valuable precursor to other advanced methods - 
e.g., Model Predictive Control, which is explained in the
next chapter.
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The analysis presented in this chapter builds on the
results in Chapter 18, where state space design
methods were briefly described in the SISO context.
We recall, from that chapter, that the two key
elements were

◆ state estimation by an observer
◆ state-estimate feedback
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State-Estimate Feedback

Consider the following MIMO state space model
having m inputs and p outputs.

By analogy with state-estimate feedback in the SISO
case (as in Chapter 7), we seek a matrix K ∈  �m×n and
a matrix J ∈  �n×p such that (Ao - BoK) and (Ao - JCo)
have their eigenvalues in the LHP.  Further we will
typically require that the closed-loop poles reside in
some specified region in the left-half plane.  Tools such
as MATLAB provide solutions to these problems.

ẋ(t) = Aox(t) + Bou(t)
y(t) = Cox(t)
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Example 22.1

Consider a MIMO plant having the nominal model

Say that the plant has step-type input disturbances in
both channels.

Using state-estimate feedback ideas, design a
multivariable controller which stabilizes the plant
and, at the same time, ensures zero steady-state error
for constant references and disturbances.

Go(s) =
1

s(s+ 1)(s+ 2)

[
2(s+ 1) −0.5s(s+ 1)

s 2s

]
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We first build state space models (Ap, Bp, Cp, 0) and
(Ad, Bd, Cd, 0) for the plant and for the input
disturbances, respectively.

We estimate not only the plant state xp(t) but also the
disturbance vector di(t).  We then form the control
law

u(t) = −Kpx̂(t)− d̂i(t) + r(t)
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One pair of possible state space models is

where

and

ẋp(t) = Apxp(t) + Bpu(t) y(t) = Cpxp(t)
ẋd(t) = Adxd(t) + Bdu(t) di(t) = Cdxd(t)

Ap =



−3 −2 0 0
1 0 0 0
0 0 −2 2
0 0 0 0


 ; Bp =



1 2
0 0
0 −0.5
1 0


 ; Cp =

[
0 0 1 0
0 1 0 0

]

Ad = 0; Bd = 0; Cd = I2
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The augmented state space model, (A, B, C, 0) is
then given by

leading to a model with six states.

A =
[
Ap BpCd

0 Ad

]
=
[
Ap Bp

0 0

]
B =

[
Bp

Bd

]
=
[
Bp

0

]
C =

[
Cp 0

]
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We then compute the observer gain J, choosing the six
observer poles located at -5, -6, -7, -8, -9, -10.  This is
done using the MATLAB command place for the pair
(AT, CT).

Next we compute the feedback gain K.  We note that it is
equivalent (with              ) to

i.e., we need only compute Kp.  This is done by using the
MATLAB command place for the pair (Ap, Bp).  The
poles in this case are chosen at -1.5 ± j1.32, -3 and -5.

0)( =tr
u(t) = −

[
Kp Cd

] [x̂p(t)
x̂d(t)

]
=⇒ K =

[
Kp I2

]
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The design is evaluated by applying step references
and input disturbances in both channels, as follows:

where  di
(1)(t) and di

(2)(t) are the first and second
components of the input-disturbance vector
respectively.

The results are shown on the next slide.

r1(t) = µ(t− 2); r2(t) = −µ(t− 5); d
(1)
i (t) = µ(t− 10); d

(2)
i (t) = µ(t− 15)
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Figure 22.1:  MIMO design based in state-estimate
feedback
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The above results indicate that the design is quite
satisfactory.  Note that there is strong coupling but
decoupling was not part of the design specification.
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We next turn to an alternative procedure that deals with
the MIMO case via optimization methods.  A
particularly nice approach for the design of K and J is to
use quadratic optimization because it leads to simple
closed-form solutions.
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Dynamic Programming and
Optimal Control

We begin at a relatively abstract nonlinear level but
our ultimate aim is to apply these ideas to the linear
case.
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The Optimal Control Problem

Consider a general nonlinear system with input u(t) ∈  �m,
described in state space form by

Problem:  (General optimal control problem).  Find an
optimal input uo(t), for t ∈  [to, tf], such that

where  ν(s, u, t) and g(x(tf)) are nonnegative functions.

uo(t) = argmin
u(t)

{∫ tf

to

V(x, u, t)dt+ g(x(tf ))
}

dx(t)
dt

= f(x(t), u(t), t)
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Necessary Condition for Optimality

Theorem 22.1: (Optimality Principle Bellman).  If
{u(t) = uo(t), t ∈  [to, tf]} is the optimal solution for the
above problem, then uo(t) is also the optimal solution
over the (sub)interval [to + ∆t, tf], where to < to + ∆t < tf.

Proof:  See the book.  The essential idea is that any part
of an optimal trajectory is necessarily optimal in its own
right.
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We will next use the above theorem to derive
necessary conditions for the optimal u.  The idea is to
consider a general time interval [t, tf], where
t ∈  [to, tf], and then to use the Optimality Principle
with an infinitesimal time interval [t, t + ∆t].

Some straightforward analysis leads to the following
equations for the optimal cost:
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−∂Jo(x(t), t)
∂t

= V(x(t),U , t) +
[
∂Jo(x(t), t)

∂x

]T

f
(
x(t),U , t)

The solution for this equation must satisfy the boundary condition

Jo(x(tf ), tf ) = g(x(tf ))
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At this stage we cannot proceed further without being
more specific about the nature of the original
problem.  We also note that we have implicitly
assumed that the function Jo(x(t), t) is well behaved,
which means that it is continuous in its arguments
and that it can be expanded in a Taylor series.
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The Linear Quadratic Regulator
(LQR)

We next apply the above general theory to the following
problem.

Problem: (The LQR problem).  Consider a linear time-
invariant system having a state space model, as defined
below:

We aim to drive the initial state xo to the smallest possible
value as soon as possible in the interval [to, tf], but
without spending too much control effort.

dx(t)
dt

= Ax(t) + Bu(t) x(to) = xo

y(t) = Cx(t) + Du(t)
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In particular, we aim to optimize

where  ΨΨΨΨ ∈  �n×n  and ΨΨΨΨf  ∈  �n×n  are symmetric
nonnegative definite matrices and ΦΦΦΦ ∈  �m×m is a
symmetric positive definite matrix.

Note that this is a special case of the general cost
function given early - this one is quadratic in the states
and controls.  Hence the name Linear Quadratic
Optimal Control.

Ju(x(to), to) =
∫ tf

to

[
x(t)TΨx(t) + u(t)TΦu(t)

]
dt+ x(tf )TΨfx(t)
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To solve this problem, the theory summarized above
can be used.  We first make the following
connections between the general optimal problem
and the LQR problem:

f(x(t), u(t), t) = Ax(t) + Bu(t)

V(x, u, t) = x(t)TΨx(t) + u(t)TΦu(t)

g(x(tf )) = x(tf )TΨfx(tf )
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Simple application of the general conditions for
optimality leads to

where  P(t) satisfies

uo(t) = −Ku(t)x(t)

where Ku(t) is a time varying gain, given by

Ku(t) = Φ−1BTP(t)

−dP(t)
dt

= Ψ − P(t)BΦ−1BT P(t) + P(t)A + AT P(t)
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The above equation is known as the Continuous Time
Dynamic Riccati Equation (CTDRE).  This equation
has to be solved backwards in time, to satisfy the
boundary condition:

P(tf ) = Ψf
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Some brief history of this equation is contained in the
excellent book:

   Bittanti, Laub, Williams, “The Riccati Equation” ,
Springer Verlag, 1991.

Some extracts are given below.
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Some History of the Riccati Equation
“Towards the turn of the seventeenth century, when the baroque
was giving way to the enlightenment, there lived in the Republic
of Venice a gentleman, the father of nine children, by the name
of Jacopo Franceso Riccati.  On the cold New Year’s Eve of
1720, he wrote a letter to his friend Giovanni Rizzetti, where he
proposed two new differential equations.  In modern symbols,
these equations can be written as follows.

Where m is a constant. This is probably the first document
witnessing the early days of the Riccati Equation, an equation
which was to become of paramount importance in the centuries
to come.”
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Who was Riccati ?
“Count Jacopo Riccati was born in Venice on May 28, 1676.  His
father, a nobleman, died when he was only ten years old.  The boy
was raised by his mother, who did not marry again, and by a
paternal uncle, who recognized unusual abilities in his nephew and
persuaded Jacopo Francesco’s mother to have him enter a Jesuit
college in Brescia.  Young Riccati enrolled at this college in 1687,
probably with no intention of ever becoming a scientist.  Indeed, at
the end of his studies at the college, in 1693, he enrolled at the
university of Padua as a student of law.  However, following his
natural inclination, he also attended classes in astronomy given by
Father Stefano degli Angeli, a former pupil of Bonaventura
Cavalieri.  Father Stefano was fond of Isaac Newton’s
Philosophiae Naturalis Principia, which he passed onto young
Riccati around 1695.  This is probably the event which caused
Riccati to turn from law to science.”
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“After graduating on June 7, 1696, he married Elisabetta dei Conti
d’Onigo on October 15, 1696.  She bore him 18 children, of whom 9
survived childhood.  Amongst them, Vincenzo (b.1707, d.1775), a
mathematical physicist, and Giordano (b.1709, d.1790) a scholar
with many talents but with a special interest for architecture and
music, are worth mentioning.
Riccati spent most of his life in Castelfranco Veneto, a little town
located in the beautiful country region surrounding Venice.  Besides
taking care of his family and his large estate, he was in charge of the
administration of Castelfranco Veneto, as Provveditore (Mayor) of
that town, for nine years during the period 1698-1729.  He also
owned a house in the nearby town of Treviso, where he moved after
the death of his wife (1749), and where his children had been used
to spending a good part of each year after 1747”.
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Count Jacopo Franceso Riccati
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Returning to the theory of Linear Quadratic Optimal
Control, we note that the theory holds equally well
for time-varying systems - i .e., when A, B, ΦΦΦΦ, ΨΨΨΨ  are
all functions of time.  This follows since no explicit
(or implicit) use of the time invariance of these
matrices was used in the derivation.  However, in the
time-invariant case, one can say much more about the
properties of the solution.  This is the subject of the
next section.
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Properties of the Linear Quadratic
Optimal Regulator

Here we assume that A, B, Φ, Ψ are all time-
invariant.  We will be particularly interested in what
happens at t → ∞.  We will summarize the key
results here.
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Quick Review of Properties

We make the following simplifying assumptions:
(i) The system (A, B) is stabilizable from u(t).

(ii) The system states are all  adequately seen by the cost
function.  Technically, this is stated as requiring that
(ΨΨΨΨ½, A) be detectable.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

Under these conditions, the solution to the CTDRE,
P(t), converges to a steady-state limit Ps

∞ as tf  → ∞.
This limit has two key properties:
❖  Ps

∞ is the only nonnegative solution of the matrix algebraic
    Riccati equation
    obtained by setting dP(t)/dt = 0 in

❖  When this steady-state value is used to generate a feedback
    control law, then the resulting closed-loop system is stable.

0 = Ψ − P∞BΦ−1BT P∞ + P∞A + AT P∞

−dP(t)
dt

= Ψ − P(t)BΦ−1BT P(t) + P(t)A + AT P(t)
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More Detailed Review of Properties
Lemma 22.1:  If P(t) converges as tf  → ∞, then the limiting
value P∞ satisfies the following Continuous-Time Algebraic
Riccati Equation (CTARE):

The above algebraic equation can have many solutions.
However, provided (A, B) is stabilizable and (A, ΨΨΨΨ½) has
no unobservable modes on the imaginary axis, then there
exists a unique positive semidefinite solution Ps

∞ to the
CTARE having the property that the system matrix of the
closed-loop system, A - ΦΦΦΦ-1BTPs

∞, has all its eigenvalues in
the OLHP.  We call this particular solution the stabilizing
solution of the CTARE.  Other properties of the stabilizing
solution are as follows:

0 = Ψ − P∞BΦ−1BT P∞ + P∞A + AT P∞
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(a) If (A, ΨΨΨΨ½) is detectable, the stabilizing solution is the only
nonnegative solution of the CTARE.

(b) If (A, ΨΨΨΨ½) has unobservable modes in the OLHP, then the
stabilizing solution is not positive definite.

(c) If (A, ΨΨΨΨ½) has an unobservable pole outside the OLHP, then,
in addition to the stabilizing solution, there exists at least one
other nonnegative solution to the CTARE.  However, in this
case, the stabilizing solution satisfies Ps

∞ -P∞ ≥ 0, where P∞
is any other solution of the CTARE.

Proof:  See the book.
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Thus we see that the stabilizing solution of the
CTRAE has the key property that, when this is used
to define a state variable feedback gain, then the
resulting closed loop system is guaranteed stable.

We next study the convergence of the solutions of the
CTRDE (a differential equation) to particular
solutions of the CTRAE (an algebraic equation).
We will be particularly interested in those conditions
which guarantee convergence to the stabilizing
solution.
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Convergence of the solution of the CTDRE to the
stabilizing solution of the CTARE is addressed in the
following lemma.
Lemma 2.22:  Provided that (A, B) is stabilizable, that
(A, ΨΨΨΨ½) has no unobservable poles on the imaginary
axis, and that the terminal condition satisfies: ΨΨΨΨf > Ps

∞,
then

(If we strengthen the condition of ΨΨΨΨ to require that
(A, ΨΨΨΨ½) is detectable, then ΨΨΨΨf ≥ 0 suffices).
Proof:  See the book.

lim
tf→∞

P(t) = Ps
∞
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Example

Consider the scalar system

and the cost function

The associated CTDRE is

and the CTARE is

ẋ(t) = ax(t) + u(t)

J = ψfx(tf )2 +
∫ tf

0

(
ψx(t)2 + u(t)2

)
dt

Ṗ (t) = −2aP (t) + P (t)2 − ψ; P (tf ) = ψf

(P s
∞)2 − 2aP s

∞ − ψ = 0
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Case 1: ψψψψ ≠≠≠≠ 0
Here, (A, ΨΨΨΨ½) is completely observable (and thus
detectable).  There is only one nonnegative solution
of the CTARE.  This solution coincides with the
stabilizing solution.  Making the calculations, we find
that the only nonnegative solution of the CTARE is

leading to the following gain:

P s
∞ =

2a+
√

4a2 + 4ψ
2

Ks
∞ = a+

√
a2 + ψ



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

The corresponding closed-loop pole is at

This is clearly in the LHP, verifying that the solution
is indeed the stabilizing solution.

Other cases are considered in the book.

pcl = −
√
a2 + ψ
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To study the convergence of the solutions, we again
consider:

Case 1: ψψψψ ≠≠≠≠ 0
Here  (A, ΨΨΨΨ½) is completely observable.  Then P(t)
converges to Ps

∞ for any ψf ≥ 0.
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Linear quadratic regulator theory is a powerful tool in
control-system design.  We illustrate its versatility in
the next section by using it to solve the so-called Model
Matching Problem (MMP).
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Model Matching Based on Linear
Quadratic Optimal Regulators

Many problems in control synthesis can be reduced
to a problem of the following type:

Given two stable transfer functions M(s) and 
N(s), find a stable transfer function Γ(s) so that 
N(s)Γ(s) is close to M(s) in a quadratic norm 
sense.
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When M(s) and N(s) are matrix transfer functions,
we need to define a suitable norm to measure
closeness.  By way of illustration, we consider a
matrix A = [aij] ∈  �p×m for which we define the
Fröbenius norm as follows

||A||F =
√
traceAHA =

√√√√ m∑
i=1

p∑
j=1

|aij |2
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Using this norm, a suitable synthesis criterion for the
Model Matching Problem described earlier might be:

where

and where S is the class of stable transfer functions.

Γo = argmin
Γ∈S

JΓ

JΓ =
1
2π

∫ ∞

−∞

∥∥M(jω)− N(jω)Γ(jω)
∥∥2

F
dω
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This problem can be converted into vector form by
vectorizing M and ΓΓΓΓ.  For example, say that ΓΓΓΓ is
constrained to be lower triangular and that M, N, and
ΓΓΓΓ are 3 × 3, 3 × 2, and 2 × 2 matrices, respectively;
then we can write

where ||  ||2 denotes the usual Euclidean vector norm
and where, in this special case,

JΘ =
1
2π

∫ ∞

−∞

∥∥V(jω)− W(jω)Θ(jω)
∥∥2

2
dω
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V(s) =




M11(s)
M12(s)
M21(s)
M22(s)
M31(s)
M32(s)



; W(s) =




N11(s) N12(s) 0
0 0 N12(s)

N21(s) N22(s) 0
0 0 N22(s)

N31(s) N32(s) 0
0 0 N32(s)



; Θ(s) =


Γ11(s)
Γ21(s)
Γ22(s)
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Conversion to Time Domain

We next select a state space model for V(s) and W(s)
of the form

V(s) = C1[sI − A1]−1B1

W(s) = C2[sI − A2]−1B2
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Before proceeding to solve the model-matching
problem, we make a slight generalization.  In
particular, it is sometimes desirable to restrict the size
of ΘΘΘΘ.  We do this by generalizing the cost function by
introducing an extra term that weights ΘΘΘΘ.  This leads
to

where ΓΓΓΓ and R are nonnegative symmetrical
matrices.

JΘ =
1
2π

∫ ∞

−∞

{∥∥V(jω)− W(jω)Θ(jω)
∥∥2

Γ
+
∥∥Θ(jω)

∥∥2

R

}
dω
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We can then apply Parseval’s theorem to convert JΘΘΘΘ
into the time domain.  The transfer functions are
stable and strictly proper, so this yields

where

JΘ =
∫ ∞

0

{∥∥y1(t)− y2(t)
∥∥2

Γ
+
∥∥u(t)∥∥2

R

}
dt

[
ẋ1(t)
ẋ2(t)

]
=
[
A1 0
0 A2

] [
x1(t)
x2(t)

]
+
[

0
B2

]
u(t);

[
x1(0)
x2(0)

]
=
[
B1

0

]
[
y1(t)
y2(t)

]
=
[
C1 0
0 C2

] [
x1(t)
x2(t)

]
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In detail we have

where x(t) = [x1(t)T   x2(t)T] and

We recognize this as a standard LQR problem, where

JΘ =
∫ ∞

0

{
x(t)TΨx(t) + u(t)TRu(t)

}
dt

Ψ =
[

C1
T

−C2
T

]
Γ
[
C1 −C2

]

A =
[
A1 0
0 A2

]
; B =

[
0
B2

]
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Note that, to achieve the transformation of the model-
matching problem into a LQR problem, the key step
is to link L-1[ΘΘΘΘ(s)] to u(t).
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Solution

We are interested in expressing u(t) as a function of
x(t) - i.e.,

such that JΘΘΘΘ is minimized.  The optimal value of K is
given by the solution to the LQR problem.  We will
also assume that the values of A, B, ΦΦΦΦ, etc. are such
that K corresponds to a stabilizing solution.

u(t) = −Kx(t) = −[K1 K2]
[
x1(t)
x2(t)

]
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The final input u(t) satisfies

In transfer-function form, this is

which, upon our using the special structure of A, B,
and K, yields

ẋ(t) = Ax(t) + Bu(t) x(0) =
[
B1

T 0
]T

u(t) = −Kx(t)

U(s) = Θ(s) = −K (sI − A + BK)−1

[
B1

0

]

Θ(s) = [−I + K2 (sI− A2 + B2K2)
−1 B2] K1 (sI− A1)

−1 B1



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

Discrete-Time Optimal Regulators

The theory for optimal quadratic regulators for
continuous-time systems can be extended in a
straightforward way to provide similar tools for
discrete-time systems.  We will briefly summarize
the main results.
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Consider a discrete-time system having the following
state space description:

and the cost function

x[k + 1] = Aqx[k] + Bqu[k]
y[k] = Cqx[k]

Ju(x[ko], ko) =
kf∑
ko

(
x[k]T Ψx[k] + u[k]T Φu[k]

)
+ x[kf ]T Ψfx[kf ]
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The optimal quadratic regulator is given by

where  Ku[k] is a time-varying gain, given by

where P[k] satisfies the following Discrete Time
Dynamic Riccati Equation (DTDRE).

uo[k] = −Ku[k]x[k]

Ku[k] =
(
Φ + BT P[k]B

)−1
BT P[k]A

P[k] = AT

(
P[k + 1]− P[k + 1]B

(
Φ + BTP[k + 1]B

)−1
BTP[k + 1]

)
A + Ψ



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

This equation must also be solved backwards, subject
to the boundary condition

P[kf ] = Ψf
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The steady-state (kf → ∞) version of the control law is
given by

where K∞ and P∞ satisfy the associated Discrete Time
Algebraic Riccati Equation (DTARE):

with the property that A - BK∞ has all its eigenvalues
inside the stability boundary, provided that (A, B) is
stabilizable and (A, ΨΨΨΨ½) has no unobservable modes on
the unit circle.

uo[k] = −K∞x[k] where K∞ =
(
Φ + BT P∞B

)−1
BT P∞A

AT

(
P∞ − P∞B

(
Φ + BTP∞B

)−1
BT P∞

)
A + Ψ− P∞ = 0
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Connections to Pole Assignment

Note that, under reasonable conditions, the steady-
state LQR ensures closed-loop stability.  However,
the connection to the precise closed-loop dynamics is
rather indirect;  it depends on the choice of ΨΨΨΨ and ΦΦΦΦ.
Thus, in practice, one usually needs to perform some
trial-and-error procedure to obtain satisfactory
closed-loop dynamics.
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In some circumstances, it is possible to specify a
region in which the closed-loop poles should reside
and to enforce this in the solution.  A simple example
of this is when we require that the closed-loop poles
have real part to the left of s = -α, for α ∈  �+.  This
can be achieved by first shifting the axis by the
transformation

Then ℜ (s) = -α � ℜ {υ} = 0.

v = s+ α
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A slightly more interesting demand is to require that
the closed-loop poles lie inside a circle with radius ρ
and with center at (-α, 0), with α > ρ ≥ 0 - i.e., the
circle is entirely within the LHP.

This can be achieved by using a two-step procedure:
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(i) We first transform the Laplace variable s to a new
variable, ζ, defined as follows:

This takes the original circle is   s   to a unit circle in   ζ  .
The corresponding transformed state space model has the
form

ζ =
s+ α

ρ

ζX(ζ) =
1
ρ
(αI + Ao)X(ζ) +

1
ρ
BoU(ζ)
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(ii) One then treats the above model as the state space
description of a discrete-time system.  So, solving the
corresponding discrete optimal control problem leads to a
feedback gain K such that  1/ρ (αI + Ao - BoK) has all its
eigenvalues inside the unit disk.  This in turn implies that,
when the same control law is applied in continuous time,
then the closed-loop poles reside in the original circle in
s  .
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Example

Consider a 2 × 2 multivariable system having the
state space model

Find a state-feedback gain matrix K such that the
closed-loop poles are all located in the disk with
center at (-α; 0) and with radius ρ, where α = 6 and
ρ = 2.

Ao =


1 1 1
2 −1 0
3 −2 2


 ; Bo =


0 1
1 0
2 −1


 ; Co =

[
1 0 0
0 1 0

]
; Do = 0



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

We use the approach proposed above:

We first need the state space representation in the
transformed space.

A =
1
ρ
(αI + Ao) and B =

1
ρ
Bo
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The MATLAB command dlqr, with weighting
matrices ΨΨΨΨ = I3 and ΦΦΦΦ = I2, is then used to obtain the
optimal gain Kζζζζ, which is

When this optimal gain is used in the original
continuous-time system, the closed-loop poles,
computed from  det(sI - Ao + BoKζζζζ) = 0, are located
at -5.13, -5.45, and -5.59.  All these poles lie in the
prescribed region, as expected.

K =
[
7.00 −4.58 7.73
3.18 7.02 −4.10

]
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Observer Design

Next, we turn to the problem of state estimation.
Here, we seek a matrix J ∈  �n×p such that A - JC has
its eigenvalues inside the stability region.  Again, it is
convenient to use quadratic optimization.
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As a first step, we note that an observer can be designed
for the pair (C, A) by simply considering an equivalent
(called dual) control problem for the pair (A, B).  To
illustrate how this is done, consider the dual system with

Then, using any method for state-feedback design, we
can find a matrix K′ ∈  �p×n such that A′ - B′K′ has its
eigenvalues inside the stability region.  Hence, if we
choose J = (K′)T, then we have ensured that A - JC has
its eigenvalues inside the stability region.  Thus, we have
completed the observer design.

A′ = AT B′ = CT
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The procedure leads to a stable state estimation of the
form

Of course, using the tricks outlined above for state-
variable feedback, one can also use transformation
techniques to ensure that the poles describing the
evolution of the observer error also end up in any
region that can be related to either the continuous- or
the discrete-time case by a rational transformation.

˙̂x(t) = Aox̂(t) + Bou(t) + J(y(t)− Cx̂(t))
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We will show how the above procedure can be
formalized by using Optimal Filtering theory.  The
resulting optimal filter is called a Kalman filter.
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Linear Optimal Filters

We will present one derivation of the optimal filters
based on stochastic modeling of the noise.  An
alternative derivation based on model matching is
given in the book.
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Derivation Based on a Stochastic
Noise Model

We show how optimal-filter design can be set -up as
a quadratic optimization problem.  This shows that
the filter is optimal under certain assumptions
regarding the signal-generating mechanism.  In
practice, this property is probably less important than
the fact that the resultant filter has the right kind of
tuning knobs so that it can be flexibly applied to a
large range of problems of practical interest.
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Details of the Stochastic Model

Consider a linear stochastic system of the form

where  dv(t) dw(t) are known as orthogonal
increment processes.

dx(t) = Ax(t)dt+ dw(t)
dy(t) = Cx(t)dt+ dv(t)
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Since a formal treatment of stochastic differential
equations is beyond the scope of this book, it suffices
here to think of the formal notation     (t),   (t)  as
white-noise processes with impulsive correlation:

where  E{�}  denotes mathematical expectation and
δ(�) is the Dirac-delta function.

w� v�

)(})()({ ζδζ −= twtw T Q��E

)(})()({ ζδζ −= tvtv T R��E
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We can then informally write the model as

For readers familiar with the notation of spectral density
for random processes, we are simply requiring that the
spectral density for     (t) and     (t) be Q and R,
respectively.

w� v�

dx(t)
dt

= Ax(t) +
dw(t)
dt

y′(t) =
dy(t)
dt

= Cx(t) +
dv(t)
dt
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Our objective will be to find a linear filter driven by
y′(t) that produces a state estimate          having least
possible error (in a mean square sense). We will
optimize the filter by minimizing the quadratic function

where

is the estimation error.

We will proceed to the solution of this problem in four
steps.

)(ˆ tx

Jt = E{x̃(t)x̃(t)T }

x̃(t) = x̂(t)− x(t)
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Step 1:
Consider a time-varying version of the model given by

where             and             have zero mean and are
uncorrelated, and

dxz(t)
dt

= Az(t)x(t) + ẇz(t)

y′z(t) =
dyz(t)
dt

= Cz(t)xz(t) + v̇z(t)

)( twz� )( tv z�

)()(})()({
)()(})()({

ζδζ
ζδζ

−=
−=

ttvtv
ttwtw

T
zz

T
zz

z

z

R
Q

��

��

E

E
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For this model, we wish to compute

We assume that                                       with     (t)
uncorrelated with the initial state xz(0) = xoz .

}.)()({)( T
zz txtxt E=P

,)0()0({ oP=T
zz xxE zw�



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

The solution to the model is easily seen to be

where  φz(t2, t1) ∈  �n×n is the state transition matrix
for the system.  Then squaring and taking
mathematical expectations, we have

xz(t) = φz(t, 0)xoz +
∫ t

0

φz(t, τ )ω̇z(τ )dτ

P(t) = E{xz(t)xz(t)T} = φz(t, 0)Poφz(t, 0)
T +

∫ t

0

φz(t, τ )Qz(τ )φz(t, τ )
Tdτ
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Differentiating the above equation and using the
Leibnitz rule, we obtain

where we have also used the fact that d/dt φ(t, τ) =
Az(t)φ(t, τ).

dP(t)
dt

= AzP(t) + P(t)Az
T + Qz(t)
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Step 2:
We now return to the original problem:  to obtain an
estimate,           for the state, x(t).  We make a
simplifying assumption by fixing the form of the filter.
That is, we assume the following linear form for the
filter:

where J(t) is a time-varying gain yet to be determined.

),(ˆ tx

dx̂(t)
dt

= Ax̂(t) + J(t)[y′(t)− Cx(t)]
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Step 3:
Assume that we are also given an initial state
estimate       having the statistical property

and assume, for the moment, that we are given some
gain J(τ) for 0 ≤ τ ≤ t.  Derive an expression for

ox̂
E{(x(0)− x̂o)(x(0)− x̂o)T } = Po,

P(t) = E{(x̂(t)− x(t))(x̂(t)− x(t))T}
= E{x̃(t)x̃(t)T }
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Solution:  Subtracting the model from the filter format,
we obtain

We see that this is a time-varying system, and we can
therefore immediately apply the solution to Step 1, after
making the following connections:

to conclude

subject to P(0) = Po.  Note that we have used the fact that
Qz(t) = J(t)RJ(t)T + Q.

dx̃(t)
dt

= (A − J(t)C)x̃(t) + J(t)v̇(t)− ẇ(t)

xz(t) → x̃(t); Az(t) → (A − J(t)C); ẇz(t) → J(t)v̇(t)− ẇ(t)

dP(t)
dt

= (A − J(t)C)P(t) + P(t)(A− J(t)C)T + J(t)RJ(t)T + Q
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Step 4:
We next choose J(t), at each time instant, so that     is
as small as possible.
Solution:  We complete the square on the right-hand
side of

by defining J(t) = J*(t) + J(t) where J*(t) = P(t)CTR-1.

P�

dP(t)
dt

= (A − J(t)C)P(t) + P(t)(A− J(t)C)T + J(t)RJ(t)T + Q
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Substituting into the equation for P(t) gives:

We clearly see that          is minimized at every time
if we choose                 Thus, J*(t) is the optimal-
filter gain, because it minimizes          (and hence
P(t)) for all  t.

dP(t)
dt

=(A − J(t)C− J̃(t)C)P(t) + P(t)(A− J(t)C− J̃(t)C)T

+ (J∗(t) + J̃(t))R(J∗(t) + J̃(t))T + Q

=(A − J(t)C)P(t) + P(t)(A− J(t)C)T

+ J∗(t)RJ∗(t) + Q + J̃(t)R(J̃(t))T

)( tP�
0.)(~ =tJ

)( tP�
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In summary, the optimal filter satisfies

where the optimal gain J*(t) satisfies

and P(t) is the solution to

subject to P(0) = Po.

dx̂(t)
dt

= Ax̂(t) + J∗(t)[y′(t)− Cx̂(t)]

J∗(t) = P(t)CTR−1

dP(t)
dt

=(A − J∗(t)C)P(t) + P(t)(A− J∗(t)C)T

+ J∗(t)R(J∗(t))T + Q



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

The key design equation for P(t) is

This can also be simplified to

The reader will recognize that the solution to the optimal
linear filtering problem presented above has a very close
connection to the LQR problem presented earlier. This
is not surprising in view of the duality idea mentioned
earlier

dP(t)
dt

=(A − J∗(t)C)P(t) + P(t)(A− J∗(t)C)T

+ J∗(t)R(J∗(t))T + Q

dP(t)
dt

= Q− P(t)CTR−1CP(t) + P(t)AT + AP(t)
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Time Varying Systems ?

It is important to note, in the above derivation, that it
makes no difference whether the system is time
varying (i.e., A, C, Q, R, etc. are all functions of
time).  This is often important in applications.
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Properties ?

When we come to properties of the optimal filter,
these are usually restricted to the time-invariant case
(or closely related cases - e.g., periodic systems).
Thus, when discussing the steady-state filter, it is
usual to restrict attention to the case in which A, C,
Q, R, etc. are not explicit functions of time.

The properties of the optimal filter then follow
directly from the optimal LQR solutions, under the
correspondences given in Table 22.10 on the next
slide.
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Regulator Filter

τ t− τ

tf 0

A −AT

B −CT

Ψ Q

Φ R

Ψf Po

Table 22.1:  Duality between quadratic regulators and filters

Note that, using the above correspondences, one can
convert an optimal filtering problem into an optimal
control problem and vice versa.
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In particular, one is frequently interested in the
steady-state optimal filter obtained when A, C, Q and
R are time invariant and the filtering horizon tends to
infinity.  By duality with the optimal control
problem, the steady-state filter takes the form

where

and Ps
∞ is the stabilizing solution of the following

CTARE:

dx̂(t)
dt

= Ax̂+ J∞
s (y′ − Cx̂)

J∞
s = Ps

∞CT R−1

Q− P∞CT R−1CP∞ + P∞AT + AP∞ = 0
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We state without proof the following facts that are
the duals of those given for the LQP.
(i) Say that the system (C, A) is detectable from y(t);  and

(ii) Say that the system states are all perturbed by noise.  
(Technically, this is stated as requiring that (A, Q½) is 
stabilizable).
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Then, the optimal solution of the filtering Riccati
equation tends to a steady-state limit Ps

∞ as t → ∞.
This limit has two key properties:

◆ Ps
∞ is the only nonnegative solution of the matrix

algebraic Riccati Equation

obtained by setting dP(t)/dt in
Q− P∞CT R−1CP∞ + P∞AT + AP∞ = 0

dP(t)
dt

= Q− P(t)CTR−1CP(t) + P(t)AT + AP(t)
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◆ When this steady-state value is used to generate a
steady-state observer, then the observer has the
property that (A - Js

∞C) is a stability matrix.

Note that this gives conditions under which a stable
filter can be designed.  Placing the filter poles in
particular regions follows the same ideas as used
earlier in the case of optimal control.
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Discrete-Time Optimal Quadratic
Filter
We can readily develop discrete forms for the optimal filter.
In particular, consider a discrete-time system having the
following state space description:

where  w[k] ∈  �n and v[k] ∈  �n are uncorrelated stationary
stochastic processes, with covariances given by

where Q ∈  �n×p is a symmetric nonnegative definite matrix
and R ∈  �n×p is a symmetric positive definite matrix

x[k + 1] = Ax[k] + Bu[k] + w[k]
y[k] = C[k] + v[k]

E{w[k]wT [ζ]} = QδK [k − ζ]

E{v[k]vT [ζ]} = RδK [k − ζ]
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Consider now the following observer to estimate the
system state:

Furthermore, assume that the initial state x[0] satisfies

Then the optimal choice (in a quadratic sense) for the
observer gain sequence {Jo[k]} is given by

where P[k] satisfies the following discrete-time dynamic
Riccati equation (DTDRE).

x̂[k + 1] = Ax̂[k] + Bu[k] + Jo[k]
(
y[k]− Cx̂[k]

)

E{(x[0]− x̂[0])(x[0]− x̂[0])T } = Po

Jo[k] = AP[k]CT
(
R + CP[k]CT

)−1
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which can be solved forward in time, subject to

P[k + 1] = A
(
P[k]− P[k]CT

(
R + CP[k]CT

)−1
CP[k]

)
AT + Q

P[0] = Po



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

The steady-state (k → ∞) filter gain satisfies the
DTARE given by

A
[
P∞ − P∞CT

(
R + CP∞CT

)−1
CP∞

]
AT + Q = P∞
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Stochastic Noise Models

In the above development, we have simply represented
the noise as a white-noise sequence ({ω(k)}) and a
white measurement-noise sequence ({υ(k)}).  Actually,
this is much more general than it may seem at first
sight.  For example, it can include colored noise having
an arbitrary rational noise spectrum.  The essential idea
is to model this noise as the output of a linear system
(i.e., a filter) driven by white noise.
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Thus, say that a system is described by

where {ωc(k)} represents colored noise - noise that is
white noise passed through a filter.  Then we can add
the additional noise model to the description.  For
example, let the noise filter be

where {ω(k)} is a white-noise sequence.

x(k + 1) = Ax(k) + Bu(k) + ωc(k)
y(k) = Cx(k) + υ(k)

x′(k + 1) = A′x(k) + ω(k)
ωc(k) = C′x′(k)
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This yields a composite system driven by white noise,
of the form

x̄(k + 1) = Āx̄(k) + B̄u(k) + ω̄(k)
y(k) = C̄x̄(k) + υ(k)

where

x̄(k) = [x(k)T , x′(k)T ]T

ω̄(k) = [0, ω(k)T ]

Ā =
[
A C′

0 A′

]
; B̄ =

[
B
0

]
; C̄ =

[
C 0

]
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Because of the importance of the discrete Kalman
Filter in applications, we will repeat below the
formulation and derivation. The discrete derivation
may be easier to follow than the continuous case
given earlier.
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Discrete-Time State-Space Model

kk

kkk

xy
Buxx

C
A

=
+=+1

The above state-space system is deterministic since no
noise is present.
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We can introduce uncertainty into the model by
adding noise terms

This is referred to as a stochastic state-space model.

kkkk wuxx ++=+ BA1

kkk nxy +=C

Process
noise

Measurement
noise
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In particular, for a 3rd Order System we have:

kkkk wuxx ++=+ BA1

kkk nxy +=C

Process
noise

Measurement
noise
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xk
3 ˜ y k

B, A C + +

xk
1

xk
2

yk

nk

wk

uk

~

Xk - state vector
A  - system matrix
B  - input matrix
C  - output matrix
yk - output (PVm)
yk - noise free output (PV)
wk - process noise
nk - measurement noise
uk - control input (MV)

This is illustrated below:
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We recall that a Kalman Filter is a particular type of
observer.  We propose a form for this observer on the
next slide.
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Observers
We are interested in constructing an optimal observer
for the following state-space model:

An observer is constructed as follows:

where  J is the observer gain vector, and      is the
best estimate of yk  i.e.

kkk

kkkk

nxy
wuxx

+=
++=+

C
BA1

)ˆ(ˆˆ 1 kkkkk yyJuxx −++=+ BA
kŷ

.ˆˆ kk xy C=
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Thus the observer takes the form:

This equation can also be written as:

)ˆ(ˆˆ 1 kkkkk xyJuxx CBA −++=+

kkkk uJyxJx BCA ++−=+ ˆ)(ˆ 1
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yk − ˆ y k

Real 
System

ykuk

ˆ y k

J

++
++

++ _ +
(A,B) C

ˆ x k
� 

� 

� 
� 
� 
� 

� 

� 

� 
� 
� 
� 

Observer in Block Diagram Form
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Kalman Filter

The Kalman filter is a special observer that has
optimal properties under certain hypotheses.  In
particular, suppose that.

1) wk and nk are statistically independent 
(uncorrelated in time and with each other)

2) wk and nk, have Gaussian distributions
3) The system is known exactly

The Kalman filter algorithm provides an observer
vector J that results in an optimal state estimate.
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The optimal J is referred to as the Kalman Gain (J*)

k

kkkkk

xy
yyJuxx

ˆˆ
)ˆ(*ˆˆ 1

C
BA

=
−++=+
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Five step Kalman Filter Derivation

Background:
E[•] - Expected Value or Average
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The above assumes wk and nk are zero mean.        and
      are usually diagonal.       and       are matrix
versions of standard deviation squared or variance.

2
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Solution:
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Step 2:

What is a good estimate of xk ?

We try the following form for the filter (where the
sequence {Jk} is yet to be determined):
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Step 3:
Given

and

Evaluate:
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Solution:
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Let

Then applying the result of step 2 we have
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Step 4:
Given

Evolves according to

What is the best (optimal) value for J (call it     )?
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Solution:

Since  Pk+1 is quadratic in Jk, it seems we should be
able to determine Jk so as to minimize Pk+1.
We first consider the scalar case.
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The equation for Pk+1 then takes the form

Differentiate with respect to jk

Hence

Also pk evolves according to the equation on the top
of the slide with jk  replaced by the optimal value jk*.
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The corresponding Matrix version is
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Step 5:
Bring it all together.
Given

where

Find optimal filter.
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Solution:
The Kalman Filter
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Simple Example
Problem:
Estimate a constant from measurements yk corrupted by
white noise of variance 1.

Model for constant � xk+1 = xk;  wk = 0

Model for the corrupted measurement � yk = xk + nk

An initial estimate of this constant is given, but this
initial estimate has a variance of 1 around the true value.

[ ] ( ) 1var 22 =�==� nkk nnE
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Solution Formulation
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Calculate Pk (Given P0 = 1)
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Calculate the estimate       given the initial estimate
and the noisy measurements yk
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The above result (for this special problem) is intuitively
reasonable.  Note that the Kalman Filter has simply
averaged the measurements and has treated the initial
estimate as an extra piece of information (like an extra
measurement).  This is probably the answer you would
have guessed for estimating the constant before you
ever heard of the Kalman Filter.

The fact that the answer is heuristically reasonable in
this special case encourages us to believe that the
Kalman Filter may give a good solution in other, more
complex cases.  Indeed it does !



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

State-Estimate Feedback
Finally, we can combine the state estimation provided
by the Kalman Filter with the state-variable feedback
determined earlier to yield the following state-estimate
feedback-control law:

Note that the closed-loop poles resulting from the use of
this law are the union of the eigenvalues that result from
the use of the state feedback together with the
eigenvalues associated with the observer. Actually, the
result can also be shown to be optimal via Stochastic
Dynamic Programming.  (However, this is beyond the
scope of the treatment presented here).

u(t) = −Kx̂(t) + r(t)
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Achieving Integral Action in LQR
Synthesis

An important aspect not addressed so far is that
optimal control and optimal state-estimate feedback
do not automatically introduce integral action.  The
latter property is an architectural issue that has to be
forced onto the solution.

One way of forcing integral action is to put a set of
integrators at the output of the plant.
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This can be described in state space form as

As before, we can use an observer (or Kalman filter) to
estimate x from u and y.  Hence, in the sequel we will
assume (without further comment) that x and z are directly
measured.  The composite system can be written in state
space form as

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
ż(t) = −y(t)

ẋ
′
(t) = A

′
x(t) + B

′
u(t)
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Where

We then determine state feedback (from x′(t)) to
stabilize the composite system.

x
′
=
[
x(t)
z(t)

]
; A

′
=
[

A 0
−C 0

]
; B′ =

[
B
0

]
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The final architecture of the control system would
then appear as below.

      Figure 22.2:  Integral action in MIMO control

y∗(t)

u(t) z(t)

x̂(t)
Observer

Plant

parallel
integrators

Feedback
gain

+

−

y(t) e(t)
ż(t) = e(t)
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Industrial Applications

Multivariable design based on LQR theory and the
Kalman filter accounts for thousands of real-world
applications.

The key issue in using these techniques in practice
lies in the problem formulation;  once the problem
has been properly posed, the solution is usually rather
straightforward. Much of the success in applications
of this theory depends on the formulation, so we will
conclude this chapter with brief descriptions of four
real-world applications.
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Geostationary Satellite Tracking

It is known that so-called geostationary satellites
actually appear to wobble in the sky.  The period of
this wobble is one sidereal day.  If one wishes to
point a receiving antenna exactly at a satellite so as to
maximize the received signal, then it is necessary to
track this perceived motion.  The required pointing
accuracy is typically to within a few hundredths of a
degree.  The physical set-up is as shown in the next
figure.
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Figure 22.4: Satellite and antenna angle definitions
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One could use an open-loop solution to this problem, as
follows:  Given a model (e.g., a list of pointing angles
versus time), the antenna could be pointed in the correct
orientation as indicated by position encoders.  This
technique is used in practice, but it suffers from the
following practical issues:

◆ It requires high absolute accuracy in the position encoders,
antenna, and reflector structure.

◆ It also requires regular maintenance to put in new model
parameters

◆ It cannot compensate for wind, thermal, and other time-
varying effects on the antenna and reflector.
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This motivates the use of a closed-loop solution.  In
such a solution, the idea is to move the antenna
periodically so as to find the direction of maximum
signal strength.  However, the data so received are noisy
for several reasons, including the following:

◆ noise in the received signal, p;
◆ variations in the signal intensity transmitted from the

satellite;
◆ imprecise knowledge of the beam pattern for the antenna;

and
◆ the effect of wind gusts on the structure and the reflector.
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It is a reasonable hypothesis that we can smooth this
data by using a Kalman filter.  Toward this end, we
need first to build a model for the orbit.  Now, as seen
from the earth, the satellite executes a periodic motion
in the two axes of the antenna (azimuth and elevation -
see next slide).  Several harmonics are present but the
dominant harmonic is the fundamental.  This leads to a
model of the form
where ΨΨΨΨs(t) is, say, the azimuth angle as a function of
time.  The frequency ω in this application is known.
There are several ways of describing this model in state
space form.

y(t) = Ψs(t) = x1 + x2 sinωt+ x3 cosωt
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ψ s ( t )

Time

Typical inclined orbit satellite motion

Typical satellite motion is close to periodic, with a
period of 1 sidereal day:
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Several Harmonics are present, but the dominant 
harmonic is the fundamental:
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This can be expressed in state space form as follows:

d

dt


x1

x2

x3


 = 0

y(t) = C(t)x(t)

where C(t) = [1, sinωt, cosωt]
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Given noisy measurements,  y(t), fit a model for the 
unknown parameters  x1, x2  and  x3.

This system is time-varying (actually periodic).  We 
can then immediately apply the Kalman filter to 
estimate x1, x2 and x3 from noisy measurements of 
y(t).

Problem Reformulation:
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In practice, it is important to hypothesise the
existence of a small amount of fictitious process
noise which is added to the model equations.  This
represents the practical fact that the model is
imprecise.  This leads to a filter which is robust to the
model imprecision.
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One can formally derive properties of the resulting
filter.  Heuristically one would expect:

◆ As one increases the amount of hypothesised model error,
the filter pays more attention to the measurements, i.e. the
filter gain increases;

◆ As one decreases the amount of hypothesised model error,
the filter pays more attention to the model.  In particular,
the filter will ultimately ignore the measurements after an
initial transient if one assumes no model error.

The above heuristic ideas can, in fact, be formally
established.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

To initialize the filter one needs;
◆ a guess at the current satellite orientation;

◆ a guess at the covariance of the initial state error (P(0));

◆ a guess at the measurement-noise intensity (R);  and

◆ a rough value for the added process noise intensity (Q).
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A commercial system built around the above
principles has been designed and built at the
University of Newcastle, Australia.  This system is
marketed under the trade name ORBTRACK  and
has been used in many real-world applications
ranging from Australia to Indonesia and Antarctica.
See next slide for photo.
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ORBTRACK
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Zinc Coating-Mass Estimation in
Continuous Galvanizing Lines

A diagram of a continuous galvanizing line is shown
on the next slide.  An interesting feature of this
application is that the sheet being galvanized is a
meter or so wide and many hundreds of meters long.

The strip passes through a zinc pot (as in the figure).
Subsequently, excess zinc is removed by air knives.
The strip then moves through a cooling section, and
finally the coating mass is measured by a traversing
X-ray gauge.
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Figure 22.5: Schematic diagram of continuous 
galvanizing line
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The x ray gauge moves backwards and forwards
across the moving strip as shown diagramatically on
the next slide.
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Figure 22.6: Traversing X-ray gauge



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

If one combines the lateral motion of the X-ray gauge
with the longitudinal motion of the strip, then one
obtains the ziz-zag measurement pattern shown
below.

Figure 22.7:  
Zig-zag measurement pattern



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

Because of the sparse measurement pattern, it is highly
desirable to smooth and interpolate the coating-mass
measurements.  The Kalman filter is a possible tool to
carry out this data-smoothing function.  However,
before we can apply this tool, we need a model for the
relevant components in the coating-mass distribution.
The relevant components include the following:
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◆ Shape Disturbances (arising from shape errors in the
rolling process).

These can be described by band-pass-filtered noise 
components, by using a model of the form

ẋ1 =− ω1x1 −
[

ω2ω1

ω2 − ω1

]
n

ẋ2 = −ω2x2 −
[

ω2
2

ω1 − ω2

]
n

ysd = (1, 1)
(
x1

x2

)
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◆ Cross Bow (a quadratic term arising from nonuniform
coating effects).

This is a quadratic function of distance across the strip
and is modeled by

where d(t) denotes the distance from the left edge of the
strip and W denotes the total strip width.

ẋ3 = 0
ycb = {d(t)[d(t)−W ]}x3
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◆ Skew (due to misalignment of the knife jet)

This is a term that increases linearly with distance from
the edge.  It can thus be modeled by

ẋ4 = 0
ysc = {d(t)}x4
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◆ Eccentricity (due to out-of-round in the rolls)

Say that the strip velocity is υs and that the roll radius is
r.  Then this component can be modeled as

ẋ5 = 0
ẋ6 = 0

ye = {sin
(υs

r

)
t, cos

(υs

r

)
t}
(
x5

x6

)
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◆ Strip Flap (due to lateral movement of the strip in the
vertical section of the galvanizing line)

Let f(t) denote the model for the flap;  then this
component is modeled by

ẋ7 = 0

yf = {f(t)}x7
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◆ Mean Coating Mass (the mean value of the zinc layer)

This can be simply modeled by

ẋ8 = 0
ym = x8
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Putting all of the equations together gives us an 8th-order
model of the form

ẋ = Ax+ Bn

z = y = C(t)x+ υ

A =




−ω1 0 0 0 0 0 0 0
0 −ω2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



; B =




−
(

ω2ω1
ω2−ω1

)
−
(

ω2
2

ω1−ω2

)
0
0
0
0
0
0
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Given the above model, one can apply the Kalman
filter to estimate the coating-thickness model.  The
resultant model can then be used to interpolate the
thickness measurement.  Note that here the Kalman
filter is actually periodic, reflecting the periodic
nature of the X-ray traversing system.

C = [1, 1, d(t)[d(t)−W ], d(t), sin
(υs

d
t
)
, cos

(υs

d
t
)
, f(t), 1]
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A practical form of this algorithm is part of a
commercial system for Coating-Mass Control
developed in collaboration with the authors of this
book by a company (Industrial Automation Services
Pty. Ltd.).  The following slides are taken from
commercial literature describing this Coating Mass
Control system.
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Roll-Eccentricity Compensation in
Rolling Mills

The reader will recall that rolling-mill thickness-
control problems were described in Chapter 8.  A
schematic of the set-up is shown below.
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Figure 22.8: Rolling-mill thickness control
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F(t) : Force
h(t) : Exit-thickness Measurement
u(t) : Unloaded Roll Gap (the control variable)

In Chapter 8, it was argued that the following virtual
sensor (called a BISRA gauge) could be used to
estimate the exit thickness and thus eliminate the
transport delay from mill to measurement.

ĥ(t) =
F (t)
M

+ u(t)
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However, one difficulty that we have not previously
mentioned with this virtual sensor is that the presence
of eccentricity in the rolls significantly affects the
results.

                   Figure 22.9:  Roll eccentricity
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To illustrate why this is so, let  e  denote the roll
eccentricity.  Then the true roll force is given by

In this case, the previous estimate of the thickness
obtained from the force actually gives

Thus, e(t) represents an error, or disturbance term, in
the virtual sensor output, one due to the effects of
eccentricity.

F (t) = M(h(t)− u(t) + e(t))

ĥ(t) = h(t) + e(t)
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This eccentricity component significantly degrades
the performance of thickness control using the
BISRA gauge.  Thus, there is strong motivation to
attempt to remove the eccentricity effect from the
estimated thickness provided by the BISRA gauge.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

The next slide shows a simulation which
demonstrates the effect of eccentricity on the
performance of a thickness control system in a rolling
mill when eccentricity components are present.

◆ The upper trace shows the eccentricity signal
◆ The second top trace shows another disturbance
◆ The third top trace shows the effect of eccentricity in

the absence of feedback control
◆ The bottom trace shows that when the eccentricity

corrupted BISRA gauge estimate is used in a feedback
control system, then the eccentricity effect is magnified.
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A key property that allows us to make progress on
the problem is that e(t) is actually (almost) periodic,
because it arises from eccentricity in the four rolls of
the mill (two work rolls and two back-up rolls).
Also, the roll angular velocities are easily measured
in this application by using position encoders.  From
this data, one can determine a multi-harmonic model
for the eccentricity, of the form

e(t) =
N∑

k=1

αk sinωkt+ βk cosωkt
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Each sinusoidal input can be modeled by a second
order state space model of the form

Finally, consider any given measurement, say the
force F(t).  We can think of F(t) as comparing the
above eccentricity components buried in noise:

ẋk
1(t) = ωkx

k
2(t)

ẋk
2(t) = −ωkx

k
1(t)

y(t) = F (t) =
N∑

k=1

xk
1(t) + xk

2(t) + n(t)
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We can then apply the Kalman filter to estimate

and hence to correct the measured force measurements
for eccentricity.

Note that this application has much in common with the
satellite tracking problem since periodic functions are
involved in both applications.

The final control system using the eccentricity
compensated BISRA gauge is as shown on the next
slide.

}...,,1);(),({ 21 Nktxtx kk =



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

Figure 22.10: Final roll eccentricity compensated 
  control system
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An interesting feature of this problem is that there is
some practical benefit in using the general time-varying
form of the Kalman filter rather than the steady-state
filter.  The reason is that, in steady state, the filter acts as
a narrow band-pass filter bank centred on the harmonic
frequencies.  This is, heuristically, the correct steady-state
solution.  However, an interesting fact that the reader can
readily verify is that the transient response time of a
narrow band-pass filter is inversely proportional to the
filter bandwidth.  This means that, in steady state, one has
the following fundamental design trade-off:
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◆ On the one hand, one would like to have a narrow band-pass,
to obtain good frequency selectivity and hence good noise
rejection.

◆ On the other hand, one would like to have a wide band-pass,
to minimize the initial transient period.

This is an inescapable dichotomy for any time-invariant
filter.
This suggests that one should not use a fixed filter gain
but instead start with a wide-band filter, to minimize the
transient, but then narrow the filter band down as the
signal is acquired.  This is precisely what the time-
varying Kalman filter does.
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The next slide shows the efficacy of using the
Kalman Filter to extract multiple sinusoidal
components from a composite signal.

◆ The upper trace shows the composite signal which may
look like random noise, but is in fact a combination of
many sinewaves together with a noise component.

◆ The lower four traces show the extracted sinewaves
corresponding to four of the frequencies.  Note that after
an initial transient the filter output settles to the
sinewave component in the composite signal.
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The next slide shows a simulation which demonstrates
the advantages of using the Kalman Filter to compensate
the BISRA gauge by removing the eccentricity
components.

◆ The upper trace shows the uncontrolled response
◆ The middle trace shows the exit thickness response when a

BISRA gauge is used but no eccentricity compensation is
applied

◆ The lower trace shows the controlled exit thickness when
the BISRA gauge is used for feedback having first been
compensated using the Kalman Filter to remove the
eccentricity components.
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The next slide shows practical results of using
eccentricity compensation on a practical rolling mill.
The results were obtained on a tandem cold mill
operated by BHP Steel International.

◆ The upper trace is divided into two halves.  The left
portion clearly shows the effect of eccentricity on the
rolled thickness whilst the right hand portion shows the
dramatic improvement resulting from using eccentricity
compensation.  Note that the drift in the mean on the
right hand side is due to a different cause and can be
readily rectified.
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◆ The remainder of the traces show the effect of using an
eccentricity compensated BISRA gauge on a full coil.
The traces also show lines at ±1% error which was the
design goal at the time these results were collected.
Note that it is now common to have accuracies of
±0.1%
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The final system, as described above, has been
patented under the name AUSREC  and is available
as a commercial product from Industrial Automation
Services Pty. Ltd.
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Vibration Control in Flexible
Structures

Consider the problem of controller design for the
piezoelectric laminate beam shown on the next slide.
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Figure 22.11: Vibration control by using a piezoelectric
  actuator

u(t) ytip(t)
K(s)

y

r

This is a simple system.  However, it represents many
of the features of more complex systems where one
wishes to control vibrations.  Such problems occur in
many problems, e.g. chatter in rolling mills, aircraft
wing flutter, light weight space structures, etc.
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In the laboratory system, the measurements are taken
by a displacement sensor that is attached to the tip of
the beam, and a piezoelectric patch is used as the
actuator.  The purpose of the controller is to
minimize beam vibrations.  It is easy to see that this
is a regulator problem;  hence, a LQG controller can
be designed to reduce the unwanted vibrations.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

To find the dynamics of structures such as the beam,
one has to solve a particular partial differential equation
that is known as the Bernoulli-Euler beam equation.  By
using modal analysis techniques, it is possible to show
that a transfer function of the beam would consist of an
infinite number of very lightly damped second-order
resonant terms - that is, the transfer function from the
voltage that is applied to the actuator to the
displacement of the tip of the beam can be described by

G(s) =
∞∑

i=1

αi

s2 + 2ζiωis+ ω2
i

.
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However, one is interested in designing a controller
only for a particular bandwidth.  As a result, it is
common practice to truncate the novel by keeping the
first N modes that lie within the bandwidth of
interest.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 22

We consider a particular system and include only the
first six modes of this system.
The transfer function is then

Here, ςi’s are assumed to be 0.002 and αi’s as are
shown in the Table below.

G(s) =
6∑

i=1

αi

s2 + 2ζiωis+ ω2
i

.
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i αi ωi (rad/sec)
1 9.72× 10−4 18.95
2 0.0122 118.76
3 0.0012 332.54
4 −0.0583 651.660
5 −0.0013 1077.2
6 0.1199 1609.2
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We design a Linear Quadratic Regulator.  Here, the
ΨΨΨΨ matrix is chosen to be

The control-weighting matrix is also, somewhat
arbitrarily, chosen as ΦΦΦΦ = 10-8.  Next, a Kalman-filter
state estimator is designed with Q = 0.08I and
R = 0.005.

)1,...,,1,(1483.0 2
6

2
1 ωωdiag=Ψ
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The next slide shows the simulated open-loop and
closed-loop impulse responses of the system.  It can
be observed that the LQG controller can considerably
reduce structural vibrations.
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Figure 22.12: Open-loop and closed-loop impulse 
  responses of the beam
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On the next slide we show the open-loop and closed-
loop frequency responses of the beam.  It can be
observed that the LQG controller has significantly
damped the first three resonant modes of the
structure.
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Figure 22.13: Open-loop and closed-loop frequency
  responses of the beam
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Experimental Apparatus

A photograph of an experimental rig (at the
University of Newcastle Australia) of a flexible beam
used to study vibration control is shown on the next
slide.
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Experimental Rig of Flexible Beam
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A schematic of the beam including the controller
(which is here implemented in a dSpace® controller)
is shown on the next slide.
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Schematic of Experimental Set Up
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The experimentally measured frequency response is
shown on the next slide - note that the system is
highly resonant as predicted in the model described
earlier.  (The smooth line corresponds to the model).
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Frequency Responses
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The next slide shows simulated responses following
an impulsive type disturbance applied to the system.
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The next slide shows experimental results using the
dSpace based controller with an impulsive type input.
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The next slide compares the exponential response to
an impulse type disturbance with and without closed
loop control.
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Experimental Results: Free and Controlled Responses
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Of course, the above experimental set-up is quite
simple.  However, as we have said earlier, similar
problems occur in many real world problems.  By
way of illustrating, the next slide shows the tail-fin of
an FA-18 fighter aircraft.  This tail fin has been
covered in piezoelectric patches.  These patches are
aimed at reducing vibrations arising from turbulence.
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FA-18 Tail
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Summary
❖ Full multivariable control incorporates the interaction

dynamics rigorously and explicitly.

❖ The fundamental SISO synthesis result that, under mild
conditions, the nominal closed-loop poles can be assigned
arbitrarily carries over to the MIMO case.

❖ Equivalence of state-feedback and frequency-domain pole
placement by solving the (multivariable) Diophantine
Equation carries over as well.

❖ The complexities of multivariable systems, cause criterion-
based synthesis (briefly alluded to in the SISO case) to gain
additional motivation.
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❖ A popular family of criteria are functionals involving
quadratic forms of control error and control effort.

❖ For a general nonlinear formulation, the optimal solution is
characterized by a two-point boundary-value problem.

❖ In the linear case (the so-called linear quadratic regulator,
LQR) the general problem reduces to the solution of the
continuous-time dynamic Riccati equation, which can be
feasibly solved, leading to time-variable state feedback.

❖ After initial conditions decay, the optimal time-varying
solution converges to a constant state feedback, the so-
called steady-state LQR solution.
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❖ It is frequently sufficient to neglect the initial transient of
the strict LQR and only implement the steady-state LQR.

❖ The steady-state LQR is equivalent
◆ to a model-matching approach, where a desired complementary

sensitivity is specified and a controller is computer that matches it
as closely as possible according to some selected measure, and

◆ to pole placement, where a closed-loop polynomial is specified and
a controller is computed to achieve it.
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❖ Thus, LQR, model matching, and pole placement are
mathematically equivalent, although they do offer different
tuning parameters.

Equivalent
synthesis

techniques

Tuning parameters

LQR relative penalties on control error
versus control effort.

Model matching closed-loop complementary
sensitivity reference model and
weighted penalty on the
difference to the control loop.

Pole placement closed-loop polynomial
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❖ These techniques can be extended to discrete-time systems.

❖ There is a very close connection to the dual problem of
filtering:  inferring a state from a related (but not exactly
invertible) set of measurements.

❖ Optimal-filter design based on quadratic criteria leads again to
a Riccati equation.

❖ The filters can be synthesized and interpreted equivalently in a
◆ linear quadratic,
◆ model-matching, or
◆ pole-placement

framework.
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❖ The arguably most famous optimal-filter formulation, the
Kalman filter, can be given a stochastic or a deterministic
interpretation, depending on taste.

❖ The LQR does not automatically include integral action;
thus, rejection of constant or other polynomial disturbances
must be enforced via the Internal Model Principle.


