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Chapter 22

Design via Optimal Control
Techniques



Chapter 22

© Goodwin, Graebe, Salgado , Prentice Hall 2000

In the author’ s experience, industrial control system
design problems can be divided into four categories:

1.

Relatively smple loops for which PID design givesa
very satisfactory solution (see Chapters6 and 7).

Slightly more complex problems where an additional
feature beyond PID yields significant performance
advantages. Two key tools that can be used to
considerably advantage in this context are feedforward
control (Chapter 10) and the Smith Predictor for plants
with significant time delays (Chapters 7 and 15).
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3. Systemsinvolving significant interactions but where some
form of preliminary compensation essential converts the
problem into separate non-interacting loops which then fall
under categories 1 and 2 above (Chapter 21).

4. Difficult problems which require some form of computer
assisted optimization for their solution. (Thisisthe topic of
the current chapter and Chapter 23).
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As arough guideline: 95% of control problems fall
Into category 1 above; 4% fall into category 2 or 3.
Theremaining 1% fall into category 4.

However, the relative low frequency of occurrence of
the problems in category 4 is not representative of
their importance. Indeed, it is often this 1% of hard
problems where the real benefits of control system
design can be achieved. They are often the make or
break problems.
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We will emphasize methods for solving these
tougher problems based on optimal control theory.
There are three reasons for this choice:

1. Itisrelatively easy to understand

2. It hasbeen used in amyriad of applications. (Indeed, the
authors have used these methods on approximately 20
Industrial applications).

3. Itisavaluable precursor to other advanced methods -
e.g., Model Predictive Control, which is explained in the
next chapter.
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The analysis presented in this chapter builds on the
results in Chapter 18, where state space design
methods were briefly described in the SISO context.
We recall, from that chapter, that the two key
elements were

1 State estimation by an observer

1 state-estimate feedback
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State-Estimate Feedback

Consider the following MIMO state space model
having minputs and p outputs.

#(t) = Aoz (t) + Bou(t)

y(t) = Cox(t)
By analogy with state-estimate feedback in the SISO
case (asin Chapter 7), we seek amatrix K [ R™" and
amatrix J [ R™P such that (A, - B,K) and (A, - JC,)
have their eigenvaluesin the LHP. Further we will
typically require that the closed-loop polesreside in
some specified region in the left-half plane. Tools such
as MATLAB provide solutions to these problems.
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Example 22.1

Consider aMIMO plant having the nominal model

Guls) = 1 [2(3 +1) —0.5s(s+1)

s(s+1)(s+2) S 2s
Say that the plant has step-type input disturbances in
both channels.

Using state-estimate feedback ideas, design a
multivariable controller which stabilizes the plant
and, at the same time, ensures zero steady-state error
for constant references and disturbances.
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Wefirst build state space models (A, B, C,,, 0) and
(Ag4, By, Cy, 0) for the plant and for the input
disturbances, respectively.

We estimate not only the plant state x(t) but also the
disturbance vector d.(t). We then form the control
law
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One pair of possible state space modelsis

Tp(t) = Apxp(t) + Bpu(t) y(t) = Cpmp(t)
i’d(t) — Adaid(t) + Bdu(t) dz‘ (t) = Cdxd(t)
where
-3 —2 0 0] (1 2
1 0 0O O 0 0 O 0 1 O
Ap_ 0 0o -2 2|’ Bp_ 0 —-0.5]"° CP_[O 1 0 0]
i 0 0 0 O_ _1 0 |
and
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The augmented state space moded!, (A, B, C, 0) is
then given by

ol B Y e[ e

leading to a model with six states.
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We then compute the observer gain J, choosing the six
observer poleslocated at -5, -6, -7, -8, -9, -10. Thisis
done using the MATLAB command place for the pair

(AT, CT).

Next we compute the feedback gain K. Wenotethat it is
equivalent (withr(t)=0) to

u(t) = — [Kp Cal EZEQ] — K-[K, L]

I.e., we need only compute K ;. Thisisdone by using the
MATLAB command place for the parr (A, B). The
polesin this case are chosen at -1.5 + j1.32, -3 and -5.
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The design is evaluated by applying step references
and input disturbances in both channels, as follows:

ri(t) = p(t—2);  ra(t) = —p(t—5);  di(t) =p(t—10);  di(t) = p(t— 15
where d.(D(t) and d.(A(t) are the first and second

components of the input-disturbance vector
respectively.

The results are shown on the next dide.
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Figure 22.1: MIMO design based in state-estimate
feedback
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The above results indicate that the design is quite
satisfactory. Note that there is strong coupling but
decoupling was not part of the design specification.
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We next turn to an alternative procedure that deals with
the MIMO case via optimization methods. A

particularly nice approach for the design of K and J isto

use quadratic optimization because it leads to smple
closed-form solutions.



Dynamic Programming and
Optimal Control

We begin at arelatively abstract nonlinear level but
our ultimate aim isto apply these ideas to the linear
case.
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The Optimal Control Problem

Consider ageneral nonlinear system with input u(t) L R™,
described in state space form by

dz(t)

dt — f(x(t)vu(t)7t>

Problem: (General optimal control problem). Find an
optimal input u,(t), for t U [t,, t;], such that

(0 = wgmin | [ V(w0 + glalty) |

where U(s, u, t) and g(x(t;)) are nonnegative functions.
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Necessary Condition for Optimality

Theorem 22.1: (Optimality Principle Bellman). If
{u(t) = ue(t), t U [t,, t]} Isthe optimal solution for the
above problem, then u°(t) is also the optimal solution
over the (sub)interval [t, + At, t], wheret, <t ,+ At <t

Proof. Seethebook. The essential ideais that any part
of an optimal trajectory is necessarily optimal in itsown
right.



Chapter 22 © Goodwin, Graebe, Salgado , Prentice Hall 2000

We will next use the above theorem to derive
necessary conditions for the optimal u. Theideaisto
consider ageneral timeinterval [t, t], where

t U [t,, t;], and then to use the Optimality Principle
with an infinitessmal time interval [t, t + At].

Some straightforward analysis leads to the following
equations for the optimal cost:
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0J°(x(t),t)
ox

8% (x(t), 1)
B ot

= V(x(t),U,t) + [ rf(ﬂf(t)ﬂ,t)

The solution for this equation must satisfy the boundary condition

JO(x(ty),ty) = g(z(ty))
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At this stage we cannot proceed further without being
more specific about the nature of the original
problem. We also note that we have implicitly
assumed that the function Jo(x(t), t) iswell behaved,
which means that it Is continuous in its arguments
and that it can be expanded in a Taylor series.
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The Linear Quadratic Regulator
(LQR)

We next apply the above general theory to the following
problem.

Problem: (The LOR problem). Consider alinear time-

Invariant system having a state space model, as defined
below:

dfl(tt) — Az(t) + Bu(t) (ty) = a4

y(t) = Cx(t) + Du(t)
We am to drive theinitial state x, to the smallest possible
value as soon as possible in the interval [t,, t], but
without spending too much control effort.
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In particular, we aim to optimize
Ju(x(ts),to) = /t f [2(t)" ®x(t) + u(t) Pu(t)] dt +z(ty)" ¥ ra(t)

where W [ R"™" and W; [ R™" are symmetric
nonnegative definite matricesand ® L1 R™M|sa
symmetric positive definite matrix.

Note that thisis a specia case of the general cost
function given early - this one is quadratic in the states
and controls. Hence the name Linear Quadratic
Optimal Control.
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To solve this problem, the theory summarized above
can be used. Wefirst make the following
connections between the general optimal problem
and the LOR problem:
fx(t),u(t),t) = Azx(t) + Bu(t)
Viz,u,t) = z(t) Oz (t) + u(t) du(t)
gla(ty)) = z(ts)" ©pz(ty)
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Simple application of the general conditions for
optimality leadsto

where K, (t) is a time varying gain, given by

K,(t)=® 'B'P(t)
where P(t) satisfies

dP(t)

— =T —P(t)B® 'B'P(t) + P()A + ATP(1)
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The above equation is known as the Continuous Time
Dynamic Riccatl Equation (CTDRE). This eguation
nas to be solved backwards in time, to satisfy the
poundary condition:

P(ty) =Wy
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Some brief history of this equation is contained in the
excellent book:

Bittanti, Laub, Williams, “ The Riccati Equation” ,
Soringer Verlag, 1991.

Some extracts are given below.
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Some History of the Riccatl Equation

“Towards the turn of the seventeenth century, when the baroque
was giving way to the enlightenment, there lived in the Republic
of Venice a gentleman, the father of nine children, by the name
of Jacopo Franceso Riccati. On the cold New Y ear's Eve of
1720, he wrote aletter to hisfriend Giovanni Rizzetti, where he
proposed two new differential equations. In modern symbols,
these equations can be written as follows.

X = 0’)(2 + ﬁ m

X=ax’ + R+ At
Where misaconstant. Thisis probably the first document
witnessing the early days of the Riccati Equation, an equation
which was to become of paramount importance in the centuries
to come.”
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Who was Riccatl ?

*Count Jacopo Riccati was born in Venice on May 28, 1676. His
father, a nobleman, died when he was only ten years old. The boy
was raised by his mother, who did not marry again, and by a
paternal uncle, who recognized unusual abilitiesin his nephew and
persuaded Jacopo Francesco’ s mother to have him enter a Jesuit
collegein Brescia. Young Riccati enrolled at this college in 1687,
probably with no intention of ever becoming a scientist. Indeed, at
the end of his studies at the college, in 1693, he enrolled at the
university of Padua as a student of law. However, following his
natural inclination, he also attended classes in astronomy given by
Father Stefano degli Angeli, aformer pupil of Bonaventura
Cavalieri. Father Stefano was fond of 1saac Newton's
Philosophiae Naturalis Principia, which he passed onto young
Riccati around 1695. Thisis probably the event which caused
Riccati to turn from law to science.”
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“ After graduating on June 7, 1696, he married Elisabetta dei Conti

d’ Onigo on October 15, 1696. She bore him 18 children, of whom 9
survived childhood. Amongst them, Vincenzo (b.1707, d.1775), a
mathematical physicist, and Giordano (b.1709, d.1790) a scholar
with many talents but with a special interest for architecture and
music, are worth mentioning.

Riccati spent most of hislife in Castelfranco Veneto, a little town
located in the beautiful country region surrounding Venice. Besides
taking care of hisfamily and his large estate, he was in charge of the
administration of Castelfranco Veneto, as Provveditore (Mayor) of
that town, for nine years during the period 1698-1729. He also
owned a house in the nearby town of Treviso, where he moved after
the death of hiswife (1749), and where his children had been used
to spending a good part of each year after 1747 .
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Count Jacopo Franceso Riccatl

il b Il:‘l'- 5§ h—-.l-*:-"!ﬂ;tli

. h.—:ll .:Ij
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Returning to the theory of Linear Quadratic Optimal
Control, we note that the theory holds equally well

for time-varying systems -1 .e,, when A, B, ®, W are
all functions of time. Thisfollows since no explicit
(or implicit) use of the time invariance of these
matrices was used in the derivation. However, in the
time-invariant case, one can say much more about the
properties of the solution. Thisisthe subject of the
next section.
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Properties of the Linear Quadratic
Optimal Regulator

Herewe assumethat A, B, @, W areall time-
invariant. We will be particularly interested in what
happensatt — . Wewill summarize the key
results here.
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Quick Review of Properties

We make the following simplifying assumptions:
(1) Thesystem (A, B) is stabilizable from u(t).

(i) Thesystem states are all adeguately seen by the cost
function. Technically, thisis stated as requiring that
(W”, A) be detectable.
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Under these conditions, the solution to the CTDRE,
P(t), converges to a steady-state limit PS_ ast; — .
Thislimit has two key properties:

0 Ps_ isthe only nonnegative solution of the matrix algebraic
Riccati equation 0 =¥ — P, ,B® 'B'P, + P A + ATP
obtained by setting dP(t)/dt = 0in

_df;_it) =¥ - P(t)B® 'BTP(t) + P(t)A + ATP(¢)

0 When this steady-state value is used to generate a feedback
control law, then the resulting closed-loop system is stable.
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More Detalled Review of Properties

Lemma 22.1: If P(t) convergesast; — oo, then the limiting
value P, satisfies the following Continuous-Time Algebraic
Riccati Equation (CTARE):

0=¥-P, B® 'B'P,+P,A+A"P,
The above algebraic equation can have many solutions.
However, provided (A, B) is stabilizable and (A, W) has
no unobservable modes on the Imaginary axis, then there
exists a unigue positive semidefinite solution PS_ to the
CTARE having the property that the system matrix of the
closed-loop system, A - ®1BTPs_, hasadll itseigenvaluesin
the OLHP. We call this particular solution the stabilizing
solution of the CTARE. Other properties of the stabilizing
solution are as follows:
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(@ If (A, W) isdetectable, the stabilizing solution is the only
nonnegative solution of the CTARE.

(b) If (A, W%) has unobservable modes in the OLHP, then the
stabilizing solution is not positive definite.

(c) If (A, W% has an unobservable pole outside the OLHP, then,
In addition to the stabilizing solution, there exists at least one
other nonnegative solution to the CTARE. However, in this
case, the stabilizing solution satisfies Ps_-P_ > 0, where P,
IS any other solution of the CTARE.

Proof: See the book.
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Thus we see that the stabilizing solution of the
CTRAE hasthe key property that, when thisis used
to define a state variable feedback gain, then the
resulting closed loop system is guaranteed stable.

We next study the convergence of the solutions of the
CTRDE (a differential equation) to particular
solutions of the CTRAE (an algebraic equation).

We will be particularly interested in those conditions
which guarantee convergence to the stabilizing
solution.
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Convergence of the solution of the CTDRE to the
stabilizing solution of the CTARE is addressed in the
following lemma.

Lemma 2.22: Provided that (A, B) is stabilizable, that
(A, Y7 has no unobservable poles on the imaginary
axis, and that the terminal condition satisfies: W; > Ps_,

then
lim P(t) = PS_

(If we strengthen the condition of W to require that
(A, W”) is detectable, then W; > 0 suffices).
Proof: See the book.
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Example

Consider the scalar system

t(t) = ax(t) + u(t)
and the cost function

J=ra(ty)? +/O f (Y (t)? 4+ u(t)?) dt
The associated CTDRE Is
P(t) = —2aP(t) + P(t)* — ¢; P(ty) =ty

and the CTARE is

(P%)" —2aPs, —1 =0
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Casel: Y #0

Here, (A, W) is completely observable (and t
detectable). Thereisonly one nonnegative so
of the CTARE. This solution coincides with t

Nus
ution

ne

stabilizing solution. Making the calculations, we find
that the only nonnegative solution of the CTARE Is

2a + +/4a? + 41

P =
> 2

leading to the following gain:
K =a++a?+ 1
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The corresponding closed-loop poleis at

Pcl = —V a? + ¢
Thisisclearly inthe LHP, verifying that the solution
IS indeed the stabilizing solution.

Other cases are considered in the book.
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To study the convergence of the solutions, we again
consider:

Casel: #0

Here (A, W) is completely observable. Then P(t)
convergesto Ps, for any Y = 0.
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Linear quadratic regulator theory is a powerful tool in
control-system design. We llustrate its versatility in
the next section by using it to solve the so-called Model

Matching Problem (MMP).
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Model Matching Based on Linear
Quadratic Optimal Regulators

Many problems in control synthesis can be reduced
to aproblem of the following type:

Given two stable transfer functions M (s) and
N(s), find a stable transfer function I (s) so that
N(s)I(s) iIscloseto M(s) in aquadratic norm
sense.
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When M (s) and N(s) are matrix transfer functions,
we need to define a suitable norm to measure
closeness. By way of illustration, we consider a

matrix A = [g;] O CP*™ for which we define the
Frobenius norm as follows

m p
|A||p = ViraceAHA = J ZZMUP

i=1 j=1
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Using this norm, a suitable synthesis criterion for the
Model Matching Problem described earlier might be:

I'° = argmin Jr
& res

where
1 o

= o [ M) - NG )|} do

Jr

and where Sisthe class of stable transfer functions.
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This problem can be converted into vector form by
vectorizingM and I'. For example, say that I Is
constrained to be lower triangular and that M, N, and
[are3 x 3,3 % 2, and 2 x 2 matrices, respectively;
then we can write
|

:% .

Jo IV (jw) — W(jw)O(jw)||? dw

where || ||, denotes the usual Euclidean vector norm
and where, in this special case,
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Conversionto Time Domaln

We next select a state space model for V(s) and W(s)
of theform

V(S) = Cl[SI — Al]_lBl
W(S) = Cz[SI — Az]_le
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Before proceeding to solve the model-matching
problem, we make a dlight generalization. In
particular, it is sometimes desirable to restrict the size
of ©. We do this by generalizing the cost function by
Introducing an extraterm that weights ©. Thisleads

to
1 o

Jo [V (i) ~ W)@ (i) 3+ |0 (w7, e

:% .

where and R are nonnegative symmetrical
matrices.
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We can then apply Parseval’ s theorem to convert Jq
Into the time domain. The transfer functions are
stable and strictly proper, so thisyields

Jo = [ {ln(®) - velo)l; + uce) i }

where

[[22;52 -1 ]] [[igéi)il} BRI e R ]
Y1 t) . Cl 0 LEl(t

y2(0)] |0 Czf |z2t)
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In detail we have
Jo = /OOO {x(t)" Ox(t) +u(t) Ru(t)} dt
where x(t) =[x, ()" x,(t)"] and
v = [—CéjT] r[C, —C

We recognize this as a standard LOR problem, where

[A; 0] Jo
SR
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Note that, to achieve the transformation of the model-
matching problem into a LQR problem, the key step
Isto link LY [©(s)] to u(t).
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Solution

We are interested in expressing u(t) as afunction of
X(t) - 1.e.,

u(t) = —Ka(t) = —[Ky  Kg| [28]
such that J5 Is minimized. The optimal value of K Is
given by the solution to the LQR problem. We will
also assume that the values of A, B, @, etc. are such
that K corresponds to a stabilizing solution.
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Thefinal input u(t) satisfies

#(t) = Az(t) + Bu(t) z(0) = [B,7 0]

u(t) = —Kuz(t)
|n transfer-function form, thisis

U(s) = ©(s) = ~K (s - A + BK) ™" [B]

0

which, upon our using the special structure of A, B,
and K, yields

@(S) — [—I + K2 (SI — A2 + Bsz)_l Bz] Kl (SI — Al)_l B1
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Discrete-Time Optimal Regulators

The theory for optimal quadratic regulators for
continuous-time systems can be extended in a
straightforward way to provide ssmilar tools for
discrete-time systems. We will briefly summarize
the main results.
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Consider a discrete-time system having the following
state space description:
x|k + 1] = Ay z|k| + Byulk]
ylk| = Cqz|K]

and the cost function

k¢

Tu(elkol, ko) = Z(m[k]T\I'x[k] s u[k]%um) £l k]
ko
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The optimal quadratic regulator is given by
wOlk] = —K [k]z[k]
where K [K] Isatime-varying gain, given by

K,[k] = (®# + B"P[k|B) ' B”P[k]A

where P[K] satisfies the following Discrete Time
Dynamic Riccati Equation (DTDRE).

P[k] = A’ (P[k +1]—Plk+1/B(® +B"P[k+ 1)B) 'B"P[k + 1])A + ¥



Chapter 22 © Goodwin, Graebe, Salgado , Prentice Hall 2000

This equation must also be solved backwards, subject
to the boundary condition

Plks| =Ty
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The steady-state (ki — o) version of the control law Is
given by

wlk] = —Kooz[k] where Ko = (& + B P.B) 'BTP, A
where K, and P,, satisfy the associated Discrete Time
Algebraic Riccati Equation (DTARE):

A" (POO ~P..B(® + BTPOOB)_lBTPOO)A +¥ P, =0

with the property that A - BK , has all its eigenvalues
Inside the stability boundary, provided that (A, B) Is
stabilizable and (A, Y*) has no unobservable modes on
the unit circle.
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Connections to Pole Assignment

Note that, under reasonable conditions, the steady-
state L QR ensures closed-loop stability. However,
the connection to the precise closed-loop dynamicsis
rather indirect; it depends on the choice of W and &.
Thus, in practice, one usually needs to perform some
trial-and-error procedure to obtain satisfactory

closed-loop dynamics.
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In some circumstances, it I1s possible to specify a
region in which the closed-loop poles should reside
and to enforce thisin the solution. A simple example
of thisiswhen we require that the closed-loop poles
havereal part totheleft of s=-aq, for a LI R*. This
can be achieved by first shifting the axis by the
transformation

V=S8 + «

Then(s) =-a= L{uv} =0.
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A dlightly more interesting demand is to require that
the closed-loop poleslieinside acircle with radius p
and with center a (-a, 0), witha>p=>0-I.e, the
circleis entirely within the LHP.

This can be achieved by using a two-step procedure:
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(1) Wefirst transform the Laplace variable sto a new
variable, ¢, defined as follows:
S+ «
P

( =

Thistakestheoriginal circleis|s| toaunit circlein | |.
The corresponding transformed state space model has the
form
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(i) One then treats the above model as the state space
description of a discrete-time system. S0, solving the
corresponding discrete optimal control problem leadsto a
feedback gain K such that Yo (al + A, - B,K) hasadl its
eigenvaluesinside the unit disk. Thisin turn impliesthat,
when the same control law is applied in continuous time,
then the closed-loop poles reside in the original circlein
S|.
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Example

Consider a2 x 2 multivariable system having the
state space model

Ao=1{2 —1
2

Find a state-feedback gain matrix K such that the
closed-loop poles are al located in the disk with
center at (-a; 0) and with radius p, where a = 6 and

p=2.
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We use the approach proposed above:
We first need the state space representation in the
transformed space.

1 1
p p
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The MATLAB command diqgr, with weighting

matrices W = | ; and ® = |, Isthen used to obtain the
optimal gain K,, which is

7.00 —4.58 7.73

K =1318 702 _410

When this optimal gain is used in the original
continuous-time system, the closed-1oop poles,
computed from det(sl - A, + B,K,) =0, are located
at -5.13, -5.45, and -5.59. All these polesliein the
prescribed region, as expected.
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Observer Design

Next, we turn to the problem of state estimation.
Here, we seek amatrix J LI R™P such that A - JC has
Its eigenvalues inside the stability region. Again, it is
convenient to use quadratic optimization.
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As afirst step, we note that an observer can be designed
for the pair (C, A) by smply considering an equivalent
(called dual) control problem for the pair (A, B). To
Illustrate how thisis done, consider the dual system with

A= AT B =C?t
Then, using any method for state-feedback design, we
can find amatrix K' O RP" such that A' - B'K' hasits
eigenvaluesinside the stability region. Hence, if we
choose J = (K")T, then we have ensured that A - JC has

Its eigenvalues inside the stability region. Thus, we have
completed the observer design.
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The procedure leads to a stable state estimation of the
form

z(t) = Ao (t) + Bou(t) + J(y(t) — Ci(t))

Of course, using the tricks outlined above for state-
variable feedback, one can also use transformation
techniques to ensure that the poles describing the
evolution of the observer error also end up in any
region that can be related to elther the continuous- or
the discrete-time case by arational transformation.
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We will show how the above procedure can be
formalized by using Optimal Filtering theory. The
resulting optimal filter is called a Kalman filter.
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Linear Optimal Filters

We will present one derivation of the optimal filters
based on stochastic modeling of the noise. An
alternative derivation based on model matchingis
given in the book.
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Derivation Based on a Stochastic
Noise Modd

We show how optimal-filter design can be set -up as
a quadratic optimization problem. This shows that
the filter is optimal under certain assumptions
regarding the signal-generating mechanism. In
practice, this property is probably less important than
the fact that the resultant filter has the right kind of
tuning knobs so that it can be flexibly applied to a
large range of problems of practical interest.
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Detalls of the Stochastic Model

Consider alinear stochastic system of the form

dx(t) = Ax(t)dt + dw(t)
dy(t) = Cx(t)dt + dv(t)

where dv(t) dw(t) are known as orthogonal
INCrement processes.
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Since aformal treatment of stochastic differential
equations is beyond the scope of this book, it suffices
here to think of the formal notation w(t),v(t) as
white-noise processes with impulsive correlation:

E{w(t)w({)"}=Qd(t-{)
E{v(t)v({)"} =R (t={)

where E{-} denotes mathematical expectation and
d°) Isthe Dirac-delta function.
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We can then informally write the mode! as

v ()= 20 = el + L2

For readers familiar with the notation of spectral density
for random processes, we are ssmply requiring that the
spectral density for w(t) and v (t) be Q and R,
respectively.
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Our objective will beto find alinear filter driven by
y'(t) that produces a state estimate X(t) having least
possible error (in a mean sguare sense). We will
optimize the filter by minimizing the quadratic function

Jy = E{z(t)z(t)"}
where

IS the estimation error.

We will proceed to the solution of this problem in four
steps.
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Step 1.
Consider atime-varying version of the model given by

di”;t(t) — A, (D) (t) + i (1)
() = 220 — Gy 00) + 5.0

where W, (t) and Vv, (t) have zero mean and are
uncorrelated, and

E{w, (t)w, ({)"}=Q, (t)d(t-¢)
E{V, ()V. ()"} =R, ()o(t-{)
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For this model, we wish to compute

P(t) =E{x, (t)x,(t)"}.
We assumethat E{x, (0)x,(0)" =P,, with w,(t)
uncorrelated with the initial state x,(0) =X, -
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The solution to the model Is easlly seen to be

r.(t) = ¢, (t,0)x,, ‘|-/0 &, (t, T)w.(T)dT

where @(t,, t;) L R™"isthe state transition matrix
for the system. Then squaring and taking
mathematical expectations, we have

P(t) = E{z.(t)z.(t)"} = ¢.(t,0)Pogp.(t,0)" +/0 . (t,7)Qa(1) . (¢, 7)" dr
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Differentiating the above equation and using the
Lelbnitz rule, we obtain

%it) = A, P(t) + P()A,T + Q,(t)

where we have also used the fact that 9/, ¢t, 1) =
A (D) dt, 7).
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Step 2

We now return to the original problem: to obtain an
estimate, X(t), for the state, x(t). We make a
simplifying assumption by fixing the form of the filter.
That is, we assume the following linear form for the
filter:

di(t)
dt

= A&(t) + J(t)[y'(t) — Ca(t)]

where J(t) iIsatime-varying gain yet to be determined.
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Step 3.
Assume that we are also given an initia state
estimate X, having the statistical property

E{(2(0) = 2,)(2(0) — )" } = P,
and assume, for the moment, that we are given some
ganJ(7) for0< r<t. Derive an expression for

P(t) = £{(2(t) — x(t))(2(t) — =(t)" }
=E{a(t)z(t)"}
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Solution:  Subtracting the model from the filter format,

we obtain
di(t)
dt
We see that thisis atime-varying system, and we can

therefore immediately apply the solution to Step 1, after
making the following connections:

- (t) — Z(t); Az (t) = (A -J()C); W (t) — J(E)o(t) —w(t)
to conclude

%ﬁ’f) — (A —JOC)PH) +PH(A - IHC)T +IHORIHT +Q

subject to P(0) = P,. Note that we have used the fact that
Q.(1) =J(RIM)T + Q.

= (A-=J)C)z(t) + J(t)o(t) — w(t)
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Step 4.
We next choose J(t), at each timeinstant, so that P is
as small as possible.

Solution: We compl ete the sguare on the right-hand
side of

dZ—P — (A —JOC)P{) +PH)(A - IH)C)T +IORIMNT +Q

by defining J(t) = J*(t) + J(t) where J* (t) = P(t)CTR-L.
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Substituting into the equation for P(t) gives.
df;—iﬂ —(A—J@#)C—J@H)C)P(t) + P(t)(A — J(t)C — I(1)C)T
+ (I5(8) + I@)RI* (1) +I(1)" +Q
=(A - J(t)C)P(t) + P(t)(A — J(t)C)"
+ I (ORI* () + Q + J(OR(I(1)T

We clearly seethat P(t) isminimized at every time
if we choose J(t)=0. Thus, J*(t) is the optimal-
filter gain, because it minimizes P(t) (and hence
P(t)) for al t.
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In summary, the optimal filter satisfies

dﬂz it) = Az(t) + I ()Y (t) — Ci(t)]

where the optimal gain J*(t) satisfies

J*(t) =P(t)C'R™!

and P(t) is the solution to
%f) =(A - J*(t)C)P(t) + P(t)(A — J*(t)C)*
+I (ORI (1) +Q

subject to P(0) = P..



Chapter 22 © Goodwin, Graebe, Salgado , Prentice Hall 2000

The key design equation for P(t) Is
dz—i’f) =(A -J*(1)C)P(t) + P(t)(A — J*(t)C)"
+I'ORIT(®)" +Q
This can also be smplified to

df:i_it) — Q- P(H)CTR™'CP(t) + P()A” + AP(1)

The reader will recognize that the solution to the optimal
linear filtering problem presented above has avery close
connection to the LQR problem presented earlier. This
IS not surprising in view of the duality idea mentioned
earlier
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Time Varying Systems ?

It Isimportant to note, in the above derivation, that it

makes no difference whether the system istime
varying (i.e., A, C, Q, R, etc. are all functions of

time). Thisisoften important in applications.
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Properties ?

When we come to properties of the optimal filter,
these are usually restricted to the time-invariant case
(or closely related cases - e.qg., periodic systems).
Thus, when discussing the steady-state filter, it is
usual to restrict attention to the case in which A, C,
Q, R, etc. are not explicit functions of time.

The properties of the optimal filter then follow
directly from the optimal LQR solutions, under the
correspondences given in Table 22.10 on the next
dide.
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Table 22.1: Duality between quadratic regulators and filters

Note that, using the above correspondences, one can

convert an optimal filtering problem into an optimal
control problem and vice versa
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In particular, one is frequently interested in the
steady-state optimal filter obtained when A, C, Q and
R are time invariant and the filtering horizon tends to
infinity. By duality with the optimal control

problem, the steady-state filter takes the form
di(t)
dt

= A2 +J(y — Ci)
where
JP =P, C'R™!

and Ps_ isthe stabilizing solution of the following

CTARE:
Q-P. .C'R'CP,+P. AT+ AP =0
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We state without proof the following facts that are
the duals of those given for the LQP.

(1) Say that the system (C, A) is detectable from y(t); and

(i1) Say that the system states are all perturbed by noise.
(Technically, thisis stated as requiring that (A, Q%) is
stabilizable).
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Then, the optimal solution of the filtering Riccati
equation tends to a steady-state [imit PS_, ast — oo.
Thislimit has two key properties.

1 Ps, i1sthe only nonnegative solution of the matrix
algebraic Riccati Equation
Q-P. .C'R'CP,.+P. AT+ AP =0
obtained by setting 9"/ in
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o When this steady-state value is used to generate a
steady-state observer, then the observer has the
property that (A - J.°C) isastability matrix.

Note that this gives conditions under which astable

filter can be designed. Placing thefilter polesin
particular regions follows the same ideas as used

earlier in the case of optimal control.
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Discrete-Time Optimal Quadratic
Filter

We can readily develop discrete forms for the optimal filter.

In particular, consider a discrete-time system having the
following state space description:
x|k + 1] = Az|k] + Bulk] + w|k]
ylk| = Clk] + v[k]
where w[k] L R"and v[k] [ R" are uncorrelated stationary
stochastic processes, with covariances given by

E{wlklw" [(]} = Qox [k — ]
E{ulk]v" [(]} = Rok [k — (]
where Q U R™P is a symmetric nonnegative definite matrix
and R [ R™Pis asymmetric positive definite matrix
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Consider now the following observer to estimate the
system state;

ik + 1] = Az[k] + Bulk] + Jo[k] (y[k] — Cz[k])
Furthermore, assume that the initial state x[0] satisfies
E{(x[0] — 2[0]) (x[0] — 2[0])" } = Py
Then the optimal choice (in a quadratic sense) for the
observer gain sequence{J [K]} Isgiven by
J,[k] = AP[K]C" (R + CP[k]CT) "

where P[K] satisfies the following discrete-time dynamic
Riccati equation (DTDRE).
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Pk + 1] = A(P[k] — P[]CT (R + CP[k]CT) 'CP[k))AT + Q

which can be solved forward in time, subject to
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The steady-state (k — o) filter gain satisfies the
DTARE given by

A[P,, —P.CT(R+CP.,C") 'CP, AT +Q =P,
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Stochastic Noise Models

In the above development, we have ssmply represented
the noise as a white-noise sequence ({ aw(k)} ) and a
white measurement-noise sequence ({ v(k)}). Actualy,
thisis much more general than it may seem at first
sight. For example, it can include colored noise having
an arbitrary rational noise spectrum. The essential idea
IS to model this noise as the output of alinear system
(1.e., afilter) driven by white noise.
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Thus, say that a system is described by

r(k+1) = Ax(k) + Bu(k) + w.(k)
y(k) = Cx(k) + v(k)

where { w.(K)} represents colored noise - noisethat is
white noise passed through afilter. Then we can add
the additional noise mode to the description. For
example, let the noise filter be
2 (k+1) = A'z(k) + w(k)
we(k) = C'z' (k)

where { a(k)} Isawhite-noise sequence.
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Thisyields a composite system driven by white noise,
of the form

T(k+1) = Az(k) + Bu(k) + &(k)
y(k) = Cz(k) + v(k)

where
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Because of the importance of the discrete Kalman
Filter in applications, we will repeat below the
formulation and derivation. The discrete derivation
may be easier to follow than the continuous case

given earlier.
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Discrete-Time State-Space M odel

Xks1 = AXi +Buy
Yk =CXy

The above state-space system is deterministic since no
noise Is present.
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We can introduce uncertainty into the model by
adding noise terms

Process

/ noise
Xks1 = AXy +BuUg +w,

Vi =CXy +1N
\ Measurement

noise

Thisisreferred to as a stochastic state-space mode .
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In particular, for a 3rd Order System we have:
Process

Xiew = AXy +BU W« noise

Yie = CXic + 1y T Measurement

noise
Xl All A12 A13 4 Xl \ Bl Wl
X2 - A21 A22 A23 X2 + BZ Uk+ W2
X3 - A31 A32 A33 \X3)k BS W3 )
[ x1
(yi)=(C* C* C) x* | +(ny)
\X3 K
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Thisisillustrated below:

»g

+

+

= >

Yk

Y
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state vector

system matrix

Input matrix

output matrix

output (PV,,)

noise free output (PV)
Process noise
measurement noise
control input (MV)
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Werecall that a Kalman Filter is a particular type of
observer. We propose aform for this observer on the
next dlide.
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Observers

We are interested in constructing an optimal observer
for the following state-space mode!:

Xke1 = AXy +BuUy +w,

Yk =CXy +ny
An observer is constructed as follows:;
),Zk+l :A),Zk +Buk +J (yk _S\/k)

where Jisthe observer gain vector, and Y« isthe
best estimate of y, 1.e. §, =CX, .
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Thus the observer takes the form:
X =AX +Bu + I3 (Y —CXy)
This equation can also be written as:

),Zk+1 :(A _JC)),Zk +Jyk +Buk
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Uy ,| Real Vi,
System
)A(k
>

T4 W X

_’(A,B :9 » C -;O
>Q g A
Yi ~ Yk

Observer in Block Diagram Form
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Kaman Filter

The Kalman filter is a special observer that has
optimal properties under certain hypotheses. In
particular, suppose that.
1) w and n, are statistically independent
(uncorrelated in time and with each other)
2) w, and n,, have Gaussian distributions
3) The system is known exactly

The Kalman filter algorithm provides an observer
vector J that results in an optimal state estimate.
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The optimal J isreferred to asthe Kalman Gain (J*)
R =AR +Bu + 3% (Y — Vi)
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Five step Kalman Filter Derivation

Background:
E[+] - Expected Value or Average

> 5 =cov (W, ):E[WkWII ]

(scalar :02=var (w, )=E[wZ])

> 2=cov (n )=E[nyn] ]

(scalar :o2=var (n, )=E[n?])

W, —Vvector

> 2 —matrix

n, —vector

> 2—matrix
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The above assumes w, and n, are zero mean. = ; and
> 2 areusualy diagonal. = and =2 are matrix
versions of standard deviation sguared or variance.
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Step 1.

Given
Xke1 = AXy W
E[XoXo 1=Fo
E[wewy 1=,

Calculate

P. = E[ XX, ]
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Solution:

E [ x| = E[(Axic +wi ) (Axic +wi ) J
=E[(Axi +wi ) (xf AT +wy )]
el A7)+ (A )+ (o AT ) (] )
:AE[XkXI]AT +E[Akal] +E(WKXIAT )+ E[WkWI]
=AP AT +0+0+Y2

Pei =APAT +Y2
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Step 2
Xke1 = AXy +BuUy +w,

Yi = CX +ny
What is a good estimate of x, ?

We try the following form for the filter (where the
sequence { J,} Is yet to be determined):

Riss =AR, +Bu +J, (Y —CXy)
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Step 3.
Given
Xks1 = AXy +BuUy +w,
Y =CXy +ny
and
X =AX +Bu, +J, (Y —CX\)
Evaluate:

COV( X =Xy ) = EKXk = i ) (X = Ry )T J
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Solution:

X1 = Xiar — Xyt
=AX, +Bu, +w, —(AXk +Buy +Jy Y _JkC)’Zk)
=AX, +wW, —J, (CXk +N, )+\]kC),Zk
=AX, —J CX, +w, —Jny
:(A—JKC))TK +W, —J Ny
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Let
I:)k+1 — E [)—Zk+l )—Z|<T+1 ]

Then applying the result of step 2 we have

Pea =(A-J,C)P (A-J,C) +32+3, 32J]
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Step 4:
Given

Evolves according to

Pea =(A=J,C)P (A-J,C)" +32+J, 23]

What is the best (optimal) value for J (call it J,)?
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Solution:

Since P,,, Isquadratic in J,, it seems we should be
able to determine J, so asto minimize P, ,,.

We first consider the scalar case.
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The equation for P, ,, then takes the form

P =(a—jiC)? Py +On + jiO,
Differentiate with respect to |,

et = 2(a- juc)opy +2j07
| k

0=-(a-jxC)pkC+jon
Hence
i«*=apC(Cp,C+o?)”

Also p, evolves according to the equation on the top
of the slide with J, replaced by the optimal value |, *.
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The corresponding Matrix version is

Jy=Ji =AP,C" (CP,CT +22 )"
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Step 5:

Bring it al together.

Given Xis1 =AX, +BuU, +W,
Yi =CX +ny

where >2 = E[ww] ]

RAE E:nknlr]
PO — E(Xo _),ZO)(XO _),Zo )T]

Xo = Initial state estimate

Find optimal filter.
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Solution;
The Kalman Filter

R = ARy +Bu, +J; (Vi —CXy )
Ji =AP,CT (CPC™ +32)™
Pea =(A=J:C)P (A=J3:C)" +32+J5 32J*T
:A(Pk -P,.C" (CP,C" +X2)" CP, )AT +32
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Simple Example

Problem:

Estimate a constant from measurements y, corrupted by
white noise of variance 1.

Model for constant = x..; = %; W, =0
Model for the corrupted measurement = vy, = X, + n,
= E[n?]=var(n,)=X2 =1

An initial estimate of this constant is given, but this
Initlal estimate has avariance of 1 around the true value.
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Solution Formulation

E\_(XO—XO)ZJ:VH(XO—XO):PO:1
A=1 B=0; X;=0; X7=1

From previous Kalman Filter equationswith A =1; B =0;
C=12,=027=1

Ris1 = K I (Vi —Ki)

. P
Jp=_k
P+l
PZ
P =Py — :

P +1
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Calculate P, (Given Py = 1)
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Calculate the estimate X given theinitial estimate X
and the noisy measurementsy,

A P, .
— + —
R, = R Po+1(y0 0)
:XO+111(yO %)

:1(>A(O+YO)
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N = X
R, =%+ (y,— %)

P, +1
=>(%+¥o)* 21 (yl (%0 + o)
=é(f<o+yo+y1)

23:1(20"')’0"')’1"')’2)

)A(4:é()A(o+YO+Y1+Y2+Y3)
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The above result (for this special problem) isintuitively
reasonable. Note that the Kalman Filter has simply
averaged the measurements and has treated the initial
estimate as an extra piece of information (like an extra
measurement). Thisis probably the answer you would
have guessed for estimating the constant before you
ever heard of the Kalman Filter.

The fact that the answer is heuristically reasonable in
this special case encourages usto believe that the
Kaman Filter may give agood solution in other, more
complex cases. Indeed it does'!
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State-Estimate Feedback

Finally, we can combine the state estimation provided
by the Kalman Filter with the state-variabl e feedback
determined earlier to yield the following state-estimate
feedback-control law:

u(t) = —K&(t) + 7(t)
Note that the closed-loop poles resulting from the use of
thislaw are the union of the eigenvalues that result from
the use of the state feedback together with the
elgenvalues associated with the observer. Actually, the
result can also be shown to be optimal via Stochastic
Dynamic Programming. (However, thisis beyond the
scope of the treatment presented here).
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Achieving Integral Action in LOR
Synthesis

An important aspect not addressed so far is that
optimal control and optimal state-estimate feedback
do not automatically introduce integral action. The

|atter property is an architectural issue that hasto be
forced onto the solution.

One way of forcing integral action isto put a set of
Integrators at the output of the plant.
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This can be described in state space form as

t(t) = Az (t) + Bu(t)

y(t) = Cx(?)

(t) = —y(t)
As before, we can use an observer (or Kalman filter) to
estimate X fromu and y. Hence, in the sequel we will
assume (without further comment) that x and z are directly

measured. The composite system can be written in state
space form as

i (t) = A'z(t) + Bu(t)
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SIS B

We then determine state feedback (from X (t)) to
stabilize the composite system.
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The final architecture of the control system would
then appear as below.

*(4 parallel
v (®) integrators

> Plant iO—» Z(t) = e(t) -

=  (Observer =

Feedback

gain

A A

Figure 22.2. Integral action in MIMO control
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Industrial Applications

Multivariable design based on LQR theory and the
Kaman filter accounts for thousands of real-world
applications.

The key Issue in using these techniques in practice
lies in the problem formulation; once the problem
has been properly posed, the solution is usually rather
straightforward. Much of the success in applications
of thistheory depends on the formulation, so we will
conclude this chapter with brief descriptions of four
real-world applications.
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Geostationary Satellite Tracking

It Is known that so-called geostationary satellites
actually appear to wobble in the sky. The period of
thiswobble is one sidereal day. If onewishesto
point arecelving antenna exactly at a satellite so asto
maximize the received signal, then it is necessary to
track this perceived motion. The required pointing
accuracy Istypically to within afew hundredths of a
degree. The physical set-up is as shown in the next
figure.
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Figure 22.4: Satellite and antenna angle definitions

Earth
Station
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One could use an open-loop solution to this problem, as
follows. Given amodel (e.g., a list of pointing angles
versus time), the antenna could be pointed in the correct
orientation as indicated by position encoders. This
technique is used in practice, but it suffers from the
following practical issues.

- It requires high absolute accuracy in the position encoders,
antenna, and reflector structure.

- It also requires regular maintenance to put in new model
parameters

1 It cannot compensate for wind, thermal, and other time-
varying effects on the antenna and reflector.
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This motivates the use of a closed-loop solution. In
such a solution, the idea is to move the antenna
periodically so asto find the direction of maximum
signal strength. However, the data so received are noisy
for several reasons, including the following:

1 hoisein thereceived signal, p;

1 variations in the signal intensity transmitted from the
satellite;

1 Imprecise knowledge of the beam pattern for the antenna;
and

1 the effect of wind gusts on the structure and the reflector.
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It Is areasonable hypothesis that we can smooth this
data by using a Kalman filter. Toward thisend, we
need first to build amodel for the orbit. Now, as seen
from the earth, the satellite executes a periodic motion
In the two axes of the antenna (azimuth and elevation -
see next dide). Several harmonics are present but the
dominant harmonic is the fundamental. Thisleadsto a
model of theform y(¢) = ¥, (t) = z1 + 2 sinwt + 25 coswt
where W(1) is, say, the azimuth angle as a function of
time. The frequency w in this application is known.
There are several ways of describing this model in state
space form.



Chapter 22 © Goodwin, Graebe, Salgado , Prentice Hall 2000

Typical satellite motion is close to periodic, with a
period of 1 sidereal day:

N\ 7\ /|
| Time

Typical inclined orbit satellite motion
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Linear Model:

Several Harmonics are present, but the dominant
harmonic Is the fundamental:

s (1) =X +X Sin(at) +X; cos(at)
=C(t)x

C(t)=[1 sin(t) cost)

XT::Xl X9 X3]

with
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This can be expressed in state space form as follows:

where C(t) = |1, sin wt, cos wt]
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Problem Refor mulation:

Given noisy measurements, y(t), fit amodel for the
unknown parameters X;, X, and X,.

This system istime-varying (actually periodic). We
can then immediately apply the Kalman filter to
estimate X, X, and X5 from noisy measurements of

y(t).
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In practice, it Is important to hypothesise the
existence of asmall amount of fictitious process
noise which is added to the model equations. This
represents the practical fact that the mode! is
Imprecise. Thisleadsto afilter which isrobust to the
model imprecision.
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One can formally derive properties of the resulting
filter. Heuristically one would expect:

1 Asone increases the amount of hypothesised model error,
the filter pays more attention to the measurements, i.e. the
filter gain increases,

1 Asone decreases the amount of hypothesised model error,
the filter pays more attention to the model. In particular,
the filter will ultimately ignore the measurements after an
Initial transient if one assumes no model error.

The above heuristic ideas can, in fact, be formally
established.
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To initialize the filter one needs;
1 aguess at the current satellite orientation;
1 aguess at the covariance of the initial state error (P(0));
1 aguess at the measurement-noise intensity (R); and

1 arough value for the added process noise intensity (Q).
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A commercial system built around the above
principles has been designed and built at the
University of Newcastle, Australia. Thissystemis
marketed under the trade name ORBTRACK" and
has been used in many real-world applications

ranging from Australiato Indonesia and Antarctica.
See next dlide for photo.
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ORBTRACK
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Zinc Coating-Mass Estimation In
Continuous Galvanizing Lines

A diagram of a continuous galvanizing line is shown
on the next dide. Aninteresting feature of this
application is that the sheet being galvanized isa
meter or so wide and many hundreds of meterslong.

The strip passes through a zinc pot (asin the figure).
Subsequently, excess zinc is removed by air knives.

The strip then moves through a cooling section, and

finally the coating mass is measured by atraversing

X-ray gauge.
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Figure 22.5. Schematic diagram of continuous
galvanizing line
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The x ray gauge moves backwards and forwards
across the moving strip as shown diagramatically on
the next dide.
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Figure 22.6: Traversing X-ray gauge
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If one combinesthe lateral motion of the X-ray gauge
with the longitudinal motion of the strip, then one
obtains the ziz-zag measurement pattern shown
below.

Figure 22.7:

s ZIQ-ZAQ Measurement pattern
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Because of the sparse measurement pattern, it is highly
desirable to smooth and interpolate the coating-mass
measurements. The Kalman filter isapossible tool to
carry out this data-smoothing function. However,
before we can apply this tool, we need a mode for the
relevant components in the coating-mass distribution.
The relevant components include the following:
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1 Shape Disturbances (arising from shape errorsin the
rolling process).

These can be described by band-pass-filtered noise
components, by using amodel of the form

. Wal1
L1 = — W11 — n
wWo — W1

. w3
To = —Wolo — n

W1 — W2

ysa = (1,1) (2)
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o Cross Bow (a quadratic term arising from nonuniform
coating effects).

Thisisaquadratic function of distance across the strip
and is modeled by

i3 =0
Yoo = {d(t)[d(t) — W]}zs
where d(t) denotes the distance from the left edge of the
strip and W denotes the total strip width.
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o Skew (due to misalignment of the knife jet)

Thisisaterm that increases linearly with distance from
the edge. It can thus be modeled by

Tqg =0
Yse = {1d(t) } 4
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o Eccentricity (due to out-of-round in therolls)

Say that the strip velocity is v, and that the roll radiusis
r. Then this component can be modeled as

5 =0

T = 0

o=t (1) e (%) 0 ()
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1 Strip Flap (dueto lateral movement of the strip in the
vertical section of the galvanizing line)

Let f(t) denote the model for the flap; then this
component is modeled by

x7 =10

yr = {f(t)}xr
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1 Mean Coating M ass (the mean value of the zinc layer)

This can be ssimply modeled by

xg =0

Ym — T8
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Putting all of the equations together gives us an 8h-order

model of the form
r=Ax + Bn

z=y=C(t)xr +v

_ - _ Wawi
T w2 —w1i
2
_ Wo
Wi —Ww2

—
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\V)

OO OO OO OoO¢
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C = [1,1,d(t)[d(t) — W], d(t), sin (%t) cos (%St) F(),1]
Given the above model, one can apply the Kalman
filter to estimate the coating-thickness model. The
resultant model can then be used to interpolate the
thickness measurement. Note that here the Kalman
filter isactually periodic, reflecting the periodic
nature of the X-ray traversing system.
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A practical form of thisagorithm is part of a
commercial system for Coating-Mass Control
developed in collaboration with the authors of this
book by a company (Industrial Automation Services
Pty. Ltd.). Thefollowing slides are taken from
commercial literature describing this Coating Mass
Control system.
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CO/MAC

COATING MASS CONTROL
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Industrial Automation Serv
Postol Add
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Roll-Eccentricity Compensation in
Rolling Mills

The reader will recall that rolling-mill thickness-
control problems were described in Chapter 8. A
schematic of the set-up is shown below.
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Figure 22.8: Rolling-mill thickness control
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F(t) : Force
h(t) : Exit-thickness Measurement
u(t) . Unloaded Roll Gap (the control variable)

In Chapter 8, it was argued that the following virtual

sensor (called a BISRA gauge) could be used to
estimate the exit thickness and thus eliminate the
transport delay from mill to measurement.

h(t) = % + u(t)
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However, one difficulty that we have not previously
mentioned with this virtual sensor isthat the presence
of eccentricity in the rolls significantly affects the
results.

Figure 22.9: Roll eccentricity
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To illustrate why thisis so, let e denote the roll
eccentricity. Then the trueroll forceis given by

F(t) = M(h(t) — u(t) + e(t))
In this case, the previous estimate of the thickness
obtained from the force actually gives
h(t) = h(t) + e(t)
Thus, e(t) represents an error, or disturbance term, in

the virtual sensor output, one due to the effects of
eccentricity.
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This eccentricity component significantly degrades
the performance of thickness control using the
BISRA gauge. Thus, thereis strong motivation to
attempt to remove the eccentricity effect from the
estimated thickness provided by the BISRA gauge.
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The next slide shows a simulation which
demonstrates the effect of eccentricity on the
performance of athickness control system in arolling
mill when eccentricity components are present.

1 The upper trace shows the eccentricity signal

1 The second top trace shows another disturbance

o The third top trace shows the effect of eccentricity in
the absence of feedback control

1 The bottom trace shows that when the eccentricity
corrupted BISRA gauge estimate is used in a feedback
control system, then the eccentricity effect is magnified.
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A key property that allows us to make progress on
the problem is that &(t) is actually (almost) periodic,
because it arises from eccentricity in the four rolls of
the mill (two work rolls and two back-up rolls).
Also, the roll angular velocities are easily measured
In this application by using position encoders. From
this data, one can determine a multi-harmonic model
for the eccentricity, of the form

N

e(t) = Z o, Sin wit + By cos wyt
k=1
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Each sinusoidal input can be modeled by a second
order state space model of the form
i1 (t) = wyas (1)

t3(t) = —wpay (¢)

Finally, consider any given measurement, say the
force F(t). We can think of F(t) as comparing the
above eccentricity components buried in noise:

le + n(t)
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We can then apply the Kalman filter to estimate
{x (1), %3 (t); k=1,..,N}

and hence to correct the measured force measurements
for eccentricity.

Note that this application has much in common with the
satellite tracking problem since periodic functions are
Involved in both applications.

The final control system using the eccentricity
compensated BISRA gauge is as shown on the next
dide.
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Figure 22.10: Final roll eccentricity compensated
control system
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An interesting feature of this problem isthat thereis
some practical benefit in using the general time-varying
form of the Kalman filter rather than the steady-state

filter. Thereasonist
a harrow band-pass fi
frequencies. Thisis,

nat, In steady state, the filter acts as
ter bank centred on the harmonic
neuristically, the correct steady-state

solution. However, an interesting fact that the reader can
readily verify isthat the transient response time of a
narrow band-pass filter isinversely proportional to the
filter bandwidth. This meansthat, in steady state, one has
the following fundamental design trade-off:
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5 On the one hand, one would like to have a narrow band-pass,
to obtain good frequency selectivity and hence good noise
rejection.

5 Onthe other hand, one would like to have a wide band-pass,
to minimize the initial transient period.

Thisis an inescapabl e dichotomy for any time-invariant
filter.

This suggests that one should not use afixed filter gain
but instead start with awide-band filter, to minimize the
transient, but then narrow the filter band down as the
signal isacquired. Thisis precisdy what the time-
varying Kalman filter does.
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The next slide shows the efficacy of using the
Kaman Filter to extract multiple sinusoidal
components from a composite signal.

1 The upper trace shows the composite signal which may
look like random noise, but isin fact a combination of
many sihewaves together with a noise component.

1 Thelower four traces show the extracted sinewaves
corresponding to four of the frequencies. Note that after
an initial transient the filter output settles to the
sinewave component in the composite signal.
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"he next slide shows a simulation which demonstrates
the advantages of using the Kalman Filter to compensate
the BISRA gauge by removing the eccentricity
components.

o The upper trace shows the uncontrolled response

o The middle trace shows the exit thickness response when a
BISRA gauge is used but no eccentricity compensation is
applied

o The lower trace shows the controlled exit thickness when
the BISRA gauge is used for feedback having first been

compensated using the Kalman Filter to remove the
eccentricity components.
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The next slide shows practical results of using
eccentricity compensation on a practical rolling mill.
The results were obtained on a tandem cold mill
operated by BHP Steel International.

1 The upper trace isdivided into two halves. Theleft
portion clearly shows the effect of eccentricity on the
rolled thickness whilst the right hand portion shows the
dramatic improvement resulting from using eccentricity
compensation. Note that the drift in the mean on the
right hand side is due to a different cause and can be
readily rectified.
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1 The remainder of the traces show the effect of using an
eccentricity compensated BISRA gauge on afull cail.
The traces also show lines at £1% error which was the
design goal at the time these results were collected.
Note that it iIs now common to have accuracies of
+0.1%
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The final system, as described above, has been
patented under the name AUSRECH and is available
as acommercia product from Industrial Automation
Services Pty. Ltd.
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Vibration Control in Flexible
Structures

Consider the problem of controller design for the
piezoel ectric laminate beam shown on the next dlide.
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Figure 22.11: Vibration control by using a piezoelectric
actuator

Thisisasimple system. However, it represents many
of the features of more complex systems where one
wishes to control vibrations. Such problems occur In
many problems, e.g. chatter in rolling mills, aircraft
wing flutter, light weight space structures, etc.
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In the laboratory system, the measurements are taken
by adisplacement sensor that is attached to the tip of
the beam, and a piezoel ectric patch is used as the
actuator. The purpose of the controller isto
minimize beam vibrations. It iseasy to seethat this
Isaregulator problem; hence, aLQG controller can
be designed to reduce the unwanted vibrations.
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To find the dynamics of structures such as the beam,
one hasto solve a particular partial differential equation
that is known as the Bernoulli-Euler beam equation. By
using modal analysis techniques, it is possible to show
that atransfer function of the beam would consist of an
Infinite number of very lightly damped second-order
resonant terms - that is, the transfer function from the
voltage that is applied to the actuator to the
displacement of the tip of the beam can be described by

Q;
G(s) = ! :
(5) Z $2 4+ 2w s + w?

1=1
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However, oneis interested in designing a controller
only for a particular bandwidth. Asaresult, itis
common practice to truncate the novel by keeping the
first N modes that lie within the bandwidth of

INnterest.
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We consider a particular system and include only the
first six modes of this system.

The transfer function is then

a.
G(s) = - .
(5) Z $2 + 2Cw;s + w?

Here, ¢’ s are assumed to be 0.002 and ;' sas are
shown in the Table below.
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i o w; (rad/sec)
1]972x107* 18.95

2 0.0122 118.76

3 0.0012 332.54

4 —0.0583 651.660

5 —0.0013 1077.2

6 0.1199 1609.2
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We design a Linear Quadratic Regulator. Here, the
P matrix is chosen to be

Y =0.1483diag(w? .1, ..., wi ,1)

The control-weighting matrix is also, somewhat
arbitrarily, chosen as ® = 108. Next, a Kalman-filter
state estimator i1s designed with Q = 0.08I and

R = 0.005.
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The next slide shows the ssmulated open-loop and
closed-1oop Impulse responses of the system. |t can

be observed that the LQG controller can considerably
reduce structural vibrations.
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Figure 22.12: Open-loop and closed-loop impulse
responses of the beam
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On the next slide we show the open-loop and closed-
loop frequency responses of the beam. It can be
observed that the LQG controller has significantly
damped the first three resonant modes of the
structure.
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Figure 22.13: Open-loop and closed-1oop frequency
responses of the beam
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Experimental Apparatus

A photograph of an experimental rig (at the
University of Newcastle Australia) of aflexible beam

used to study vibration control is shown on the next
dide.



Chapter 22 © Goodwin, Graebe, Salgado , Prentice Hall 2000

Experimental Rig of Flexible Beam
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A schematic of the beam including the controller
(which is here implemented in a dSpace® controller)
IS shown on the next dlide.
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Schematic of Experimental Set Up
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The experimentally measured frequency response is
shown on the next slide - note that the system is
highly resonant as predicted in the model described
earlier. (The smooth line corresponds to the model).
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The next slide shows simulated responses following
an impulsive type disturbance applied to the system.
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The next slide shows experimental results using the
dSpace based controller with an impulsive type input.
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The next slide compares the exponential response to
an impulse type disturbance with and without closed
loop control.
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Experimental Results: Free and Controlled Responses
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Of course, the above experimental set-up Is quite
simple. However, aswe have said earlier, similar
problems occur in many real world problems. By
way of illustrating, the next slide shows the tail-fin of
an FA-18 fighter aircraft. Thistail fin has been
covered in piezoelectric patches. These patches are
aimed at reducing vibrations arising from turbulence.
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Summary

0 Full multivariable control incorporates the interaction
dynamics rigoroudly and explicitly.

0 The fundamental SISO synthesis result that, under mild
conditions, the nominal closed-loop poles can be assigned
arbitrarily carries over to the MIMO case.

0 Equivalence of state-feedback and frequency-domain pole
placement by solving the (multivariable) Diophantine
Equation carries over aswell.

0 The complexities of multivariable systems, cause criterion-
based synthesis (briefly alluded to in the S SO case) to gain
additional motivation.
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0 A popular family of criteria are functionals involving
guadratic forms of control error and control effort.

0 For ageneral nonlinear formulation, the optimal solutionis
characterized by atwo-point boundary-value problem.

0 Inthelinear case (the so-called linear quadratic regulator,
L QR) the general problem reduces to the solution of the
continuous-time dynamic Riccati eguation, which can be
feasibly solved, leading to time-variable state feedback.

0 After initial conditions decay, the optimal time-varying
solution converges to a constant state feedback, the so-
called steady-state L QR solution.
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0 It isfrequently sufficient to neglect the initial transient of
the strict LOR and only implement the steady-state L OR.

0 The steady-state LOR is equivalent

1 to amodel-matching approach, where a desired complementary
sengitivity is specified and a controller is computer that matches it
as closely as possible according to some sel ected measure, and

1 to pole placement, where a closed-loop polynomial is specified and
a controller is computed to achieve it.
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0 Thus, LQR, model matching, and pole placement are
mathematically equivalent, although they do offer different
tuning parameters.

Equivalent Tuning parameters
synthesis
techniques

LOR relative penalties on control error
versus control effort.

Model matching closed-1oop complementary
sensitivity reference model and
weighted penalty on the
difference to the control loop.

Pole placement closed-loop polynomial
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These techniques can be extended to discrete-time systems.

Thereisavery close connection to the dual problem of
filtering: inferring a state from arelated (but not exactly
invertible) set of measurements.

Optimal-filter design based on quadratic criterialeads again to
a Riccati equation.

The filters can be synthesized and interpreted equivalently in a
1 linear quadratic,
1 model-matching, or
1 pole-placement

framework.
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0 The arguably most famous optimal-filter formulation, the
Kaman filter, can be given a stochastic or a deterministic
Interpretation, depending on taste.

0 The LOQR does not automatically include integral action;
thus, rejection of constant or other polynomial disturbances
must be enforced viathe Internal Model Principle.



