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Chapter 23

Model Predictive Control
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Motivation

All real world control problems are subject to constraints
of various types.  The most common constraints are
actuator constraints (amplitude and slew rate limits).  In
addition, many problems also have constraints on state
variables (e.g. maximal pressures that cannot be
exceeded, minimum tank levels, etc).
In many design problems, these constraints can be
ignored, at least in the initial design phase. However, in
other problems, these constraints are an inescapable part
of the problem formulation since the system operates
near a constraint boundary.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

Motivation - continued

Chapter 11 described methods for dealing with
constraints based on anti-windup strategies. These
are probably perfectly adequate for simple problems
- especially SISO problems.  However, in more
complex MIMO problems - especially those having
both input and state constraints, it is frequently
desirable to have a more formal mechanism for
dealing with constraints in MIMO control system
design.
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Outline

We describe one such mechanism here based on
Model Predictive Control. This has actually been a
major success story in the application of modern
control.  More than 2,000 applications of this method
have been reported in the literature - predominantly
in the petrochemical area.  Also, the method is being
increasingly used in electromechanical control
problems.
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Advantages of Model Predictive
Control

The main advantages of MPC are:

❖ it provides a one-stop-shop for MIMO control in the
presence of constraints,

❖ it is one of the few methods that allows one to treat state
constraints, and

❖ several commercial packages are available which give
industrially robust versions of the algorithms aimed at
chemical process control.
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Anti-Windup Revisited

We assume that the complete state of a system is
directly measured.  Then, if one has a time-invariant
model for a system and if the objectives and
constraints are time-invariant, it follows that the
control policy should be expressible as a fixed
mapping from the state to the control.  That is, the
optimal control policy will be expressible as

for some static mapping  h(#). What remains is to
give a characterization of the mapping  h(#).

uo
x(t) = h(x(t))
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We can think of the anti-windup strategies of
Chapter 11 as giving a particular simple (ad-hoc)
parameterization of h(#).  Specifically, if the control
problem is formulated, in the absence of constraints,
as a linear quadratic regulator, then we know that the
unconstrained infinite horizon policy is of the form:

ho(x(t)) = −K∞x(t)
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State Space form of Anti-Windup

The anti-windup form of the above linear controller
is

where

h(x(t)) = sat{ho(x(t))}

ho(x(t)) = −K∞x(t)
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Example

We illustrate by a simple example.
Example 23.1:  Consider a continuous-time double
integrator plant which is sampled with period ∆=1
second. The corresponding discrete time model is of
the form

where

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

A =
[
1 1
0 1

]
; B =

[
0.5
1

]
; C =

[
1 0

]
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We choose to use infinite horizon LQR theory to
develop the control law.  Within this framework, we
use the following weighting matrices

We first consider the case when the control is
unconstrained.
Then, for an initial condition of  x(0) = (-10, 0)T, the
output response and input signal are as shown
below.

Ψ = CT C, Φ = 0.1
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Unconstrained Responses
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Figure 23.1:  
Output response
without constraints

          Figure 23.2:  
Input response

without constraints

Figure 23.3:  
Phase plane plot
without constraints



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

Constraining the input amplitude

We next assume that the input must satisfy the mild
constraint |u(k)| ≤ 5.  Applying the anti-windup
policy leads to the response shown on the next slide.
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Responses with Mild Constraint
 |u(k)|≤ 5
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Figure 23.4:  
Output response
with input constraint
|u(k)|≤ 5

          Figure 23.5:
Input response
with constraint

|u(k)|≤ 5

Figure 23.6:  
Phase plane plot
without constraint
|u(k)|≤ 5
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Observations

The various plots indicate that the simple anti-
windup strategy has produced a perfectly acceptable
response in this case.

The above example would seem to indicate that one
need never worry about fancy methods.
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Making the constraint more severe

Example Continued. Consider the same set up as
above, save that the input is now required to satisfy
the more severe constraint |u(k)|≤ 1.  Notice that this
constraint is 10% of the initial unconstrained input.
Thus, this is a relatively severe constraint. The
simple anti-windup control law now leads to the
response shown on the next slide.
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Figure 23.7:  
Output response
with constraint |u(k)|≤ 1

          Figure 23.8:
Input response

with constraint |u(k)|≤ 1

Figure 23.9:  
Phase plane plot
with constraint |u(k)|≤ 1
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Observations

We see that the simple anti-windup strategy is not
performing well and, indeed, has resulted in large
overshoot in this case.
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Discussion of Example with
Severe Constraints

We see that the initial input steps have caused the velocity to
build up to a large value.  If the control were unconstrained,
this large velocity would help us get to the origin quickly.
However, because of the limited control authority, the system
braking capacity is restricted and hence large overshoot occurs.
In conclusion, it seems that the control policy has been too
shortsighted and has not been able to account for the fact that
future control inputs would be constrained as well as the
current control input. The solution would seem to be to try to
look-ahead (i.e. predict the future response) and to take
account of current and future constraints in deriving the control
policy. This leads us to the idea of model predictive control.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

What is Model Predictive
Control?

Model Predictive Control is a control algorithm
based on solving an on-line optimal control problem.
A receding horizon approach is used which can be
summarized in the following steps:
(i)   At time k and for the current state x(k), solve, on-line, an
       open-loop optimal control problem over some future
       interval taking account of the current and future
       constraints.
(ii)  Apply the first step in the optimal control sequence.
(iii) Repeat the procedure at time (k+1) using the current state
       x(k+1).
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Turning the solution into a closed
loop policy

The solution is converted into a closed loop strategy
by using the measured value of x(k) as the current
state.  When x(k) is not directly measured then one
can obtain a closed loop policy by replacing x(k) by
an estimate provided by some form of observer.
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Details for Nonlinear Model
Given a model

the MPC at event (x, k) is computed by solving a constrained
optimal control problem:

where

and UN is the set of U that satisfy the constraints over the
entire interval [k, k + N - 1]; i.e.

x(� + 1) = f(x(�), u(�)), x(k) = x

PN (x) : V o
N (x) = min

U∈UN

VN (x, U)

U = {u(k), u(k + 1), . . . , u(k + N − 1)}

VN (x, U) =
k+N−1∑

�=k

L(x(�), u(�)) + F (x(k + N))
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together with the terminal constraint

Usually  UUUU ⊂  Rm is convex and compact, X ⊂  Rn  is convex
and closed, and W is a set that can be appropriately selected
to achieve stability.

u(�) ∈ U � = k, k + 1, . . . , k + N − 1
x(�) ∈ X � = k, k + 1, . . . , k + N

x(k + N) ∈ W



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

In the above formulation, the model and cost
function are time invariant.  Hence, one obtains a
time-invariant feedback control law.

Then, the actual control applied at time k is the first
element of this sequence, i.e.

PN (x) : V o
N (x) = min

U∈UN

VN (x, U)

U = {u(0), u(1), . . . , u(N − 1)}

VN (x, U) =
N−1∑
�=0

L(x(�), u(�)) + F (x(N))

Uo
x = {uo

x(0), uo
x(1), . . . , uo

x(N − 1)}

u = uo
x(0)
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Figure 23.10:  Receding horizon control principle
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An alternative view of Receding Horizon
optimization is shown on the next slide
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Alternative View of Receding
Horizon Control Policy
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The associated literature can be divided into four
generations as follows:

❖ First generation (1970’s) - used impulse or step response linear
models, quadratic cost function, and ad-hoc treatment of constraints.

❖ Second generation (1980’s) - linear state space models, quadratic
cost function, input and output constraints expressed as linear
inequalities, and quadratic programming used to solve the
constrained optimal control problem.

❖ Third generation (1990’s) - several levels of constraints (soft, hard,
ranked), mechanisms to recover from infeasible solutions.

❖ Fourth generation (late 1990’s) - nonlinear problems, guaranteed
stability, and robust modifications.
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Stability

A remarkable property of MPC is that one can
establish stability of the resultant feedback system
(at least with full state information). This is made
possible by the fact that the value function of the
optimal control problem acts as a Lyapunov function
for the closed loop system.
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Assumptions

For clarity of exposition, we make the following
simplifying assumptions:
A1: An additional constraint is placed on the final state

A2: L(x, u) is positive definite in both arguments.

x(N) = 0
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Theorem 23.1:  Consider the system controlled by
the receding horizon MPC algorithm and subject to
a terminal constraint.  This control law renders the
resultant closed loop system globally asymptotically
stable.
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Details of Proof

The value function          is positive definite and
proper (V(x)→∞ as ||x|| →∞).  It can therefore be
used as a Lyapunov function for the problem. We
recall that at event (x, k), MPC solves:

subject to constraints.

)(0 ⋅NV

PN (x) : V o
N (x) = min

U∈UN

VN (x, U)

VN (x, U) =
N−1∑
�=0

L(x(�), u(�)) + F (x(N))
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Proof continued:

We denote the optimal open loop control sequence
solving PN(x) as

We recall that inherent in the MPC strategy is the
fact that the actual control applied at time k is the
first value of this sequence;  i.e.

Let x(1) = f(x, h(x)) and let x(N) be the terminal state
resulting from the application of      .  Note that we
are assuming  x(N) = 0.

Uo
x = {uo

x(0), uo
x(1), . . . , uo

x(N − 1)}

0
xU

u = h(x) = uo
x(0)
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Proof continued:

A feasible solution (but not the optimal one) for the
second step in the receding horizon computation
PN(x1) is then:

Then the increment of the Lyapunov function on using
the true MPC optimal input and when moving from x to
x(1) = f(x, h(x)) satisfies:

Ũx = {uo
x(1), uo

x(2), . . . , uo
x(N − 1), 0}

∆hV o
N (x)

�
= V o

N (x(1)) − V o
N (x)

= VN (x(1), Uo
x1

) − VN (x, Uo
x)
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Proof continued:

However, since        is optimal, we know that

where      is the sub-optimal sequence defined earlier.
Hence, we have

0
1x

U

xU~

VN (x(1), Uo
x1

) ≤ VN (x(1), Ũx)

∆hV o
N (x) ≤ VN (x(1), Ũx) − VN (x, Uo

x)
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Proof continued:

Using the fact that      shares (N-1) terms in common
with      , we can see that the right hand side satisfies:

where we have used the fact that      leads to  x(N) = 0
by assumption and hence      leads to x(N+1) = 0.
Finally we have

When L(x, u) is positive definite in both arguments,
then stability follows immediately from the Lyapunov
Stability Theorem.

xU~
0
xU

0
xU

xU~

VN (x(1), Ũx) − VN (x, Uo
x) = −L(x, h(x))

∆hV o
N (x) ≤ −L(x, h(x))

!!!
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Beyond the issue of stability, a user of MPC would
clearly also be interested in what, if any performance
advantages are associated with the use of this
algorithm.  In an effort to (partially) answer this
question, we pause to revisit the earlier example.
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Example Revisited
Consider again the problem described earlier with
input constraint |u(k)| ≤ 1. We recall that the
shortsighted policy led to large overshoot.
Here, we consider the MPC cost function with N = 2
and such that F(x(N)) is the optimal unconstrained
infinite horizon cost and                   is the
incremental cost associated with the underlying LQR
problem.
Here we consider the constraint on the present and
next step. Thus the derivation of the control policy is
not quite as shortsighted as was previously the case.

))(),(( ll uxL
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Results for MPC with constraints
applied on first two steps
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Figure 23.11:  
Output response
using MPC

          Figure 23.12:
Input response

using MPC

Figure 23.13:  
Phase plane plot
using MPC
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Observations

Comparing these results with those obtained earlier,
we see that the performance has been significantly
improved.  This is because the policy is no longer
quite so shortsighted as it previously was.  Thus we
see that MPC can indeed over performance
advantages over the shortsighted anti-windup
strategy
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Linear Models with Quadratic
Cost Function

x(� + 1) = Ax(�) + Bu(�)
y(�) = Cx(�)

e(�) = y(�) + (d(�) − ys)

de(�) = d(�) − ys

Jo =[x(N) − xs]T Ψf [x(N) − xs]

+
N−1∑
�=0

eT (�)Ψe(�)

+
M−1∑
�=0

[u(�) − us]T Φ[u(�) − us]

Model:

Error:

Combined “disturbance”:

Cost:
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It can be shown that, if the design is unconstrained,
J0  is minimized by taking

U =  -W-1V
where  W and V are functions of A, B, C matrices.
V is also a function of the disturbances and desired
output.
Magnitude and rate constraints on both the plant
input and output can be easily expressed as linear
constraints on  U  of the form

LU ≤ K



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

QP Solution

Thus the constrained problem takes the form:

This optimization is a convex problem due to the
quadratic cost and linear constraints. Also, standard
numerical procedures (called Quadratic
Programming algorithms or QP for short) are
available to solve this sub-problem.

VW TT
U

OPT UUUU
KLU

2minarg +=
≤



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

Summary of Key Idea
❖ Solve receding horizontal optimal control problem subject

to constraints

k
T
kk

T
k

N

k
NN

T
N

x
Uu

RuuQxxxPxMinV +∑+=
+

Ω∈
∈ 1

❖ Apply first step of control - move forward one step

❖ Stability can be established - terminal constraint of  x
crucial.
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Example

12.0
3)( 2 ++

=
ss

sG

Uss = 0.33

4.0<u

Plant:

Desired Output:

Steady State Input:

Constraint on Input:

1=ssY
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Results:  dashed line - unconstrained input
     solid line - constrained input found via MPC
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Output Response:  Dashed line - response when unconstrained  input is
     saturated and applied to plant

                  Solid line - response obtained from MPC algorithm
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One Degree of Freedom Controller

A one-degree of freedom output feedback controller
is obtained by including the set point in the
quantities to be estimated. The resultant output
feedback MPC strategy is schematically depicted
below.
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Figure 23.14:  One-degree-of-freedom MPC architecture

-
QP0

Observer

G0
uopt

y(�)

d(�) ys

e(�)

x̂(�)

d̂(�)
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Integral Action

An important observation is that the architecture
described above gives a form of integral action. In
particular y is taken to the set-point ys irrespective of
the true plant description (provided a steady state is
reached and provided that, in this steady state, u is
not constrained).
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Rudder Roll Stabilization of Ships

Here we present a realistic application of model
predictive control to rudder roll stabilization of ships.
It is desirable to reduce the rolling motion of ships produced
by wave action so as to prevent cargo damage and improve
crew efficiency and passenger comfort.  Conventional
methods for ship roll stabilization include water tanks,
stabilization fins and bilge keels. Another alternative is to
use the rudder for roll stabilization as well as course
keeping. However, using the rudder for simultaneous course
keeping and roll reduction is non-trivial since only one
actuator is available to deal with two objectives.
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Constraint

An important issue in this problem is that the rudder
mechanism is usually limited in amplitude and slew
rate. Hence this is a suitable problem for model
predictive control.
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Figure 23.15:  Magnitudes and conventions for ship motion 
description
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The Model

Wave disturbances are usually considered at the
output, and the complete model of the ship dynamics
including the output equation is of the form:

where only the roll and yaw are typically directly
measured i.e. y := [�, �]T.  dwave is the wave induced
disturbance on the output variables.

wavedxy
xx

+=
+=

C
BA δ&
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Model for Wave Disturbances

The wave disturbances can be characterized in terms
of their frequency spectrum.  This frequency
spectrum can be simulated by using filtered white
noise.  The filter used to approximate the spectrum is
usually a second order one of the form

2
00

2 2
)(

ωξω ++
=

ss
sKsH w
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Control Objectives

The design objectives for rudder roll stabilization are:
❖ Increase the damping and reduce the roll amplitude
❖ Control the heading of the ship
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Details of the Model

The following model was used for the ship

This system was sampled with a zero order hold 
and sampling period of 0.5.

A =




−0.1795 −0.8404 0.2115 0.9665 0
−0.0159 −0.4492 0.0053 0.0151 0
0.0354 −1.5594 −0.1714 −0.7883 0

0 0 1 0 0
0 1 0 0 0




B =




0.2784
−0.0334
−0.0894

0
0
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Details of the Optimization
Criterion

Details of the model predictive control optimization
criterion were that a standard LQR cost function was
employed with

Optimization horizon, N = 20;  Control horizon M = 18.

1.0;
30
090

=Φ




=Ψ



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

Estimating the System State
Since only roll, �, and yaw, �, were assumed to be
directly measured, then a Kalman filter was
employed to estimate the 5 system states and 2 noise
states in the composite model.
The results of applying MPC to this problem are
shown on the following slides.
We consider three cases:
(i) No constraints on the rudder
(ii) Rudder constrained to a maximum angle of 30 degrees and a

maximum slew rate of 15 degrees per second
(iii) Rudder constrained to a maximum angle of 20 degrees and

a maximum slew rate of 8 degrees per second.
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Figure 23.16:  Ship motion with no constraints on rudder 
motion
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Figure 23.17:  Ship motion when rudder constrained to 
maximum angle of 30 degrees and maximum
slew rate of 15 degrees/sec.
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Figure 23.18:  Ship motion when rudder constrained to 
maximum angle of 20 degrees and maximum
slew rate of 8 degrees/sec.
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Observations

We see that MPC offers a satisfactory solution to this
problem.  Roll motion has been significantly reduced
and, when reformulated as part of the problem
description, constraints on maximum rudder angle
and slew rate have been imposed.
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Fluid Catalytic Reactor
Modeling and

Control  using MPC

Another Example:

This section contributed by:
Jia Chunyang, S. Rohani and Arthur Jutan
Dept. of Chemical & Biochemical Engineering
The University of Western Ontario
London, Ontario, Canada
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FCC Unit Modeling and
MPC Control Simulation

The profitability of a Fluidized Catalyst Cracking
Unit makes it of supreme importance in an oil refinery.
A typical FCC process diagram is shown in Figure 1.

Model Development
" A.Malay and S.Rohani have developed a reliable and simple

model in 1998. They used a four lump kinetic scheme. See
Fig. 2

" The model involves 40 algebraic and ordinary differential
equations.
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Figure 1:  FCC Unit Process and Control Diagram
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The variables are:

❖ Controlled variables (CVs):
◆ Riser outlet temperature (Tris)
◆ Reactor bed and regenerator differential pressure (Pd)
◆ Reactor bed level (Lrct)

❖ Manipulated variables (MVs):
◆ Regenerated catalyst flow rate (Vreg)
◆ Flue gas flow rate (Vflu)
◆ Spent catalyst flow rate (Vspt)
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❖ Disturbances (DVs):
◆ Gas oil feed flow rate (Fgas)
◆ Air flow rate (Fair)
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(Light Gases)
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Figure 2:  Four lump kinetic scheme
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The principle of MPC maybe expressed in the
following way: Based on a model of the process,
predictive control is the control strategy that makes the
predicted process dynamic output equal to a desired
dynamic output conveniently predefined.

The quadratic objective of the MPC control strategy:
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Model predictive control simulation
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Control problem formulation

The open loop system is modeled as follows:

dGGuy d+=

where, u=[Vreg   Vflu   Vspt]T,
            y=[Tris   Pd     Lrct]T,
            d=[Fgas    Fair]T,

G is the plant model and Gd is the disturbance model.
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Then the system transfer function G(z) can be obtained:
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∞

=

−

1

)(
k

kzkg

" Data acquisition
In order to acquire the process data which contain sufficient
information, we must carefully design a step test in terms of the input
amplitude and frequency.

" Offline identification
The process data  must be handled carefully. This work has mainly
been done through state space N4SID method and trial and error.

The impulse response of the system can be obtained:

Offline model identification
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Open loop dynamic responses

Open loop dynamic responses, see Figures 3-5, show
highly nonlinear and strong coupling characteristics
of the process.
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Figure 3: Transient response of the system for input changes in the
regenerated catalyst valve opening. (10% step increase at 0.5
hrs, 20% step decrease at 4 hrs, 10% increase at 8 hrs).
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Figure 4: Transient response of the system for input changes in the flue gas
valve opening. (4% step increase at 0.5 hrs, 7% step decrease at
5.2 hrs, 3% increase at 10.5 hrs).
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Figure 5: Transient response of the system for input changes in the spent
catalyst valve opening. (10% step increase at 0.5 hrs, 13% step
decrease at 5.2 hrs, 3% increase at 10.5 hrs).
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Closed loop control simulation
with PI controllers

The controller parameters are fine tuned and still so
fragile that the process can be easily out of control.
Responses are shown in Figures 6-8.
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Figure 6: Closed loop response of the system with PI controller for a 5oC
step increase in the riser temperature setpoint, followed by a
10oC step decrease.
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Figure 7: Closed loop response of the system with PI controller for a
0.03atm step increase in the differential pressure setpoint,
followed by a 0.05atm step decrease.
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Figure 8: Closed loop response of the system with PI controller for a 0.7m
step increase in the reactor bed level setpoint, followed by a 1.2m
step decrease.
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Process sampling interval: delt = 1,
Output weights: ywt = [1    1    1],
Input weights: uwt = [0     0     0],
Prediction horizon (steps): p = 60,
Manipulated variable moves: m = 60,
Input constraints: ui = [0  100%];

                                                   I = 1,2,3

The simulink block diagram is shown as Figure 9.

The MPC control results both in setpoint change  and
disturbance rejection are shown in Figures 10~15.

%1.0=∆ iu

MPC Closed loop simulation
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Figure 9: System closed loop control block diagram
      in Simulink.
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Figure 10: Closed loop response of the system with MPC controller for a
22oC step increase in the riser temperature setpoint at 5min,
followed by a 50oC step decrease at 30min, then a 28oC step
increase at 60min.
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Figure 11: Closed loop response of the system with MPC controller for a
0.08atm step increase in the differential pressure setpoint at
5min, followed by a 0.15atm step decrease at 30min, then a
0.07atm step increase at 60min.
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Figure 12: Closed loop response of the system with MPC controller for a
0.76m step increase in the reactor bed level setpoint at 5min,
followed by a 1.5m step decrease at 30min, then a 0.74m step
increase at 60min.
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Figure13: Closed loop response of the system with MPC controller for step
changes in the riser outlet temperature, differential pressure and
reactor bed level setpoints simultaneously.

(1) 22oC step increase in riser outlet
temperature setpoint, 0.08atm step
increase in differential pressure
setpoint, 0.74m step decrease in
reactor bed level setpoint at 5min.

(2) 50oC step decrease in riser outlet
temperature setpoint, 0.15atm step
decrease in differential pressure
setpoint, 1.5m step increase in
reactor bed level setpoint at 20min.

(3) 28oC step increase in riser outlet
temperature setpoint, 0.07atm step
increase in differential pressure
setpoint, 0.76m step decrease in
reactor bed level setpoint at 40min.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 23

0 5 10 15 20 25 30
750

800

850

R
is

er
 T

em
p.

(K
)

Setpoint
Output  

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

D
iff

. P
re

ss
(a

tm
)

Setpoint
Output  

0 5 10 15 20 25 30

6.5

7

7.5

8

R
ct

. B
ed

 L
el

.(m
)

Setpoint
Output  

0 5 10 15 20 25 30
0

50

100

Time (mins)

Va
l. 

O
pe

ni
ng

(%
)

Reg Cat.  
Flue Gas  
Spent Cat.

(1) 28oC step decrease in riser
outlet temperature
setpoint, 0.08atm step
increase in differential
pressure setpoint, 0.76m
step increase in reactor
bed level setpoint at 2min.

(2) 28oC step increase in riser
outlet temperature
setpoint, 0.08atm step
decrease in differential
pressure setpoint, 0.76m
step decrease in reactor
bed level setpoint at
17min.

Figure 14: Closed loop response of the system with MPC controller for step
changes in the riser outlet temperature, differential pressure
and reactor bed level setpoints simultaneously.
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Figure 15: Closed loop response of the system with MPC controller for a 20% increase in the feed
gas flow rate and 5% increase in air flow rate as disturbances at 2min, followed by
40% and 10% decrease at 15min, 40% increase in the feed gas flow rate at 30min,
40% decrease in the feed gas flow rate and 10% increase in air flow rate at 45min,
20% increase in the feed gas flow rate and 5% decrease in air flow rate at 60min.
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" MPC control strategy is far more powerful than traditional
PI controller in FCC unit, with multivariable, strong
nonlinearity, severe coupling, strict operating constraints.

" Make the operation smooth and stable, reducing much
impact on the process and therefore much off-spec
products.

" The identified model is accurate enough for MPC control
purpose.

" Based on the success of the MPC simulation on FCC
model, we are confident that the following objectives will
be achieved in an industrial practice:

Conclusion
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" Improving the process operating stability .

" Maximizing the process throughput and desirable products
yield.

" Improving the product quality.

" Minimizing energy consumption.

" Improving unit’s economic performance.
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Summary
❖ MPC provides a systematic procedure for dealing with

constraints (both input and state) in MIMO control
problems.

❖ It has been widely used in industry.

❖ Remarkable properties of the method can be established,
e.g. global asymptotic stability provided certain conditions
are satisfied (e.g. appropriate weighting on the final state).
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❖ The key elements of MPC for linear systems are:

◆ state space (or equivalent) model,

◆ on-line state estimation (including disturbances),

◆ prediction of future states (including disturbances),

◆ on-line optimization of future trajectory subject to
constraints using Quadratic Programming, and

◆ implementation of first step of control sequence.
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Embellishments

The results presented in this chapter suggest there is
a close connection between MPC and anti-windup
provided the demands made on the system are not
too severe.
Actually, recent research has shown that there exists
a non-trivial region of state space in which MPC and
anti-windup are equivalent.
The next slides illustrate this idea.
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Illustrative Example
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Regions of State Space:  A : Region where no saturation occurs
    B : Region in which MPC and anti-
          windup are equivalent.
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First Step of MPC starting from a point in state space
in which MPC ≡ anti-windup but where input
saturation occurs
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Second Step - Note input still saturated
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Third Step - Note input still saturated
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Fourth Step - Note that state has entered
region in which input is no longer saturated
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Remainder of the response - Note input
remains unsaturated
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Overlay the anti-windup Solution - Note that
MPC and anti-windup give the same solution
for this particular initial condition
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Observations

1. It is not surprising that anti-windup performs well
in some cases because it can be shown that there
is a non-trivial region of state space in which anti-
windup and MPC are equivalent.

2. However, caution is needed in interpreting this
result.  In general, anti-windup is too shortsighted
and MPC will perform better.

3. Some of these issues are explored in the problems
for readers given in the book.


