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Chapter 24

Fundamental Limitations in
MIMO Control
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Arguably, the best way to learn about real design
issues is to become involved in practical
applications.  We hope that the reader gained some
feeling for the lateral thinking that is typically
needed in most real-world problems, from reading
the various case studies that we have presented.

In this chapter, we will adopt a more abstract stance
and extend the design insights on Chapters 8 and 9 to
the MIMO case.
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It was shown in Chapters 8 and 9 that the open-loop
properties of a SISO plant impose fundamental and
unavoidable constraints on the closed-loop
characteristics that are achievable.  For example, we
have seen that, for a one-degree-of-freedom loop, a
double integrator in the open-loop transfer function
implies that the integral of the error due to a step
reference change must be zero.  We have also seen
that real RHP zeros necessarily imply undershoot in
the response to a step reference change.
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As might be expected, similar concepts apply to
multivariable systems.  However, whereas in SISO
systems one has only the frequency (or time) axis
along which to deal with the constraints, in MIMO
systems there is also a spatial dimension:  one can
trade-off limitations between different outputs as
well as on a frequency-by-frequency basis.  This
means that it is also necessary to account for the
interactions between outputs, rather than simply
being able to focus on one output at a time.
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In terms of the sensitivity dirt concept introduced in
Chapter 9, in MIMO systems we can spread this dirt
in both the frequency dimension as well as the
spatial dimension (i.e. amongst different outputs).
This idea is captured in the cartoon on the next slide.
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Multivariable Case

Sensitivity dirt Multiple piles
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Closed-Loop Transfer Function

We consider the MIMO loop of the form shown
below.

Figure 24.1:  MIMO Feedback loop
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We describe the plant model Go(s) and the controller
C(s) in LMFD and RMFD form as

For closed-loop stability, it is necessary and
sufficient that the Matrix Acl(s) be stably invertible,
where

Go(s) = GoN(s)[GoD(s)]−1 =
[
GoD(s)

]−1
GoN(s)

C(s) = CN(s)[CD(s)]−1 =
[
CD(s)

]−1
CN(s)

Acl(s)
�
= GoD(s)CD(s) +GoN(s)CN(s)
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For the purpose of the analysis in this chapter, we
will continue working under the assumption that the
MIMO plant is square, i.e., its model is an m × m
transfer function matrix.  We also assume that Go(s)
is nonsingular for almost all s and, in particular, that
det Go(0) ≠ 0.
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For future use, we denote the ith column of So(s) as
[So(s)]*i and the kth row of To(s) as [To(s)]k* ;  so

So(s) =
[
[So(s)]∗1 [So(s)]∗2 . . . [So(s)]∗m

]
; To(s) =



[To(s)]1∗
[To(s)]2∗
. . .

[To(s)]m∗



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From Chapter 20, we recall that good nominal
tracking is, as in the SISO case, connected to the
issue of having low sensitivity in certain frequency
bands.  Upon examining this requirement, we see
that it can be met if we can make

for all  ω  in the frequency bands of interest.

[I+Go(jω)Co(jω)]−1Go(jω)Co(jω) ≈ I
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MIMO Internal Model Principle

In SISO control design, a key design objective is
usually to achieve zero steady-state errors for certain
classes of references and disturbances.  However, we
have also seen that this requirement can produce
secondary effects on the transient behavior of these
errors.  In MIMO control design, similar features
appear.
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In Chapter 20, we showed that, to achieve zero
steady-state errors to step reference inputs on each
channel, we require that

We have seen earlier in the book that a sufficient
condition to obtain this result is that we can write the
controller as

This is usually achieved in practice by placing one
integrator in each error channel.

To(0) = I ⇐⇒ So(0) = 0

C(s) =
1
s
C(s) where det(C(0)) �= 0
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The Cost of the Internal Model
Principle

As in the SISO case, the Internal Model Principle
comes at a cost.  As an illustration, the following
result extends a SISO result (namely Lemma 8.1
from Chapter 8) to the multivariable case.
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Lemma 24.1:  If zero steady-state errors are required to
a ramp reference input on the rth channel, then it is
necessary that

and, as a consequence, in a one-d.o.f. loop,

where ei
r(t) denotes the error in the ith channel resulting

from a step reference input on the rth channel.

lim
s→0

1
s
[So(s)]∗r = 0

∫ ∞

0

eri (t)dt = 0 i = 1, 2, . . . ,m
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It is interesting to note the essentially multivariable
nature of the above result.  The integral of all channel
errors is zero, in response to a step reference in only
one channel.  We will establish similar multivariable
results for the case of RHP poles are zeros.

Furthermore, Lemma 24.1 shows that all components
of the MIMO plant output will overshoot their
stationary values when a step reference change occurs
on the rth channel.
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RHP Poles and Zeros

In the case of SISO plants, we found that
performance limitations are intimately connected to
the presence of open-loop RHP poles and zeros.  We
shall find that this is also true in the MIMO case.  As
a prelude to developing these results, we first review
the appropriate definitions of poles and zeros.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

Consider the plant model Go(s).  We recall that z0 is
a zero of Go(s), with corresponding left directions

          if

Similarly, we say that η0 is a pole of Go(s), with
corresponding right directions g1, g2, …, gµp, if

,...,,, 21
T
z

TT hhh µ

det(GoN(zo)) = 0 and hT
i (GoN(zo)) = 0 i = 1, 2, . . . , µz

det(GoD(ηo)) = 0 and (GoD(ηo))gi = 0 i = 1, 2, . . . , µp
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MIMO Interpolation Constraints

If we now assume that z0 and η0 are not canceled by
the controller, then the following lemma holds.

Lemma 24.2:  With z0 and η0 defined as above,

So(ηo)gi = 0 i = 1, 2, . . . µp

To(ηo)gi = gi i = 1, 2, . . . µp

hT
i To(zo) = 0 i = 1, 2, . . . µz

hT
i So(zo) = hT

i i = 1, 2, . . . µz
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We see that, as in the SISO case, open-loop poles
(i.e. the poles of Go(s)C(s)) become zeros of So(s),
and open-loop zeros (i.e. the zeros of Go(s)C(s))
become zeros of To(s).
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Time-Domain Constraints

We saw in Chapter 8 for the SISO case that the
presence of RHP poles and zeros had certain
implications for the time responses of closed-loop
systems.  We have the following MIMO version of
Lemma 8.3.
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Lemma 24.3:  Consider a MIMO feedback control
loop having stable closed-loop poles located to the
left of -α for some α > 0.  Also, assume that zero
steady-state error occurs for reference step inputs in
all channels. Then, for a plant zero z0 with left
directions h1

T, h2
T, …, hµz

T and a plant pole η0 with
right directions g1, g2, …, gµp satisfying ℜ (z0) > -α
and ℜ (η0) > -α, we have the following:
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(i) For a positive unit reference step on the rth

channel,

where hir is the rth component of hi.

∫ ∞

0

hT
i e(t)e

−zotdt =
hir

zo
; i = 1, 2, . . . , µz
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(ii) For a (positive or negative) unit-step output
disturbance in direction gi, i = 1, 2, …, µp, the
resulting error, e(t), satisfies

∫ ∞

0

e(t)e−ηotdt = 0



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

(iii)For a (positive or negative) unit reference step in
the rth channel, and provided that z0 is in the
RHP,

Proof:  See the book.

∫ ∞

0

hT
i y(t)e

−zotdt = 0; i = 1, 2, . . . , µz
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Comparing the above Lemma with Lemma 8.3
clearly shows the multivariable nature of these
constraints.  For example part (ii) holds for
disturbances coming from a particular direction.
Also, part (i) applies to particular combinations of
the errors.  Thus, the undershoot property can
(sometimes) be shared amongst different error
channels, depending on the directionality of the
zeros.
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Example

Quadruple-tank apparatus continued.
Consider again the quadruple-tank apparatus.  We
recall from our early study of this example, that for the
case γ1 = 0.43, γ2 = 0.34, there is a nonminimum-
phase zero at z0 = 0.0229.  The associated left zero
direction is approximately [1  -1].
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Hence, from Lemma 24.3 we have

for a unit step in the ith channel reference.

∫ ∞

0

(y1(t)− y2(t))e−zotdt = 0
∫ ∞

0

(e1(t)− e2(t))e−zotdt =
(−1)i−1

zo
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The zero in this case is an interaction zero;  hence,
we do not necessarily get undershoot in the response
However, there are constraints on the extent of
interaction that must occur.  This explains the high
level of interaction observed in the next slide.

We actually see that there are two ways one can deal
with this constraint.
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Simulation of Closed Loop Responses
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(i) If we allow coupling in the final response, then
we can spread the constraint between outputs;
i.e., we can satisfy the integral constraints by
having  y2(t), and hence e2(t), respond when a
step is applied to channel 1 reference, and vice-
versa.  This might allow us to avoid undershoot,
at the expense of having interaction.  The
amount of interaction needed grows as the
bandwidth increases beyond z0.
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(ii) If we design and achieve (near) decoupling, then
only one of the outputs can be nonzero after each
individual reference changes.

This implies that undershoot must occur in this
case.  Also, we see that undershoot will occur in
both channels (i.e., the effect of the single RHP
zero now influences both channels).  This is an
example of spreading resulting from dynamic
decoupling.
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General comments on effect of
decoupling

It is interesting to see the impact of dynamic
decoupling on the MIMO integral constraint:

If we can achieve a design with the decoupling
property (a subject to be analyzed in greater depth in
Chapter 26), then it necessarily follows, that for a
reference step in the rth channel, there will be no
effect on the other channels:

∫ ∞

0

hT
i e(t)e

−zotdt =
hir

zo
; i = 1, 2, . . . , µz

ek(t) = 0 for ∀k �= r, ∀t > 0
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Then the integral constraint reduces to the following
result:

or, for hir ≠ 0,

which is exactly the constraint applicable to the
SISO case.

∫ ∞

0

hirer(t)e−zotdt =
hir

zo
; i = 1, 2, . . . , µz

∫ ∞

0

er(t)e−zotdt =
1
zo
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We thus conclude that dynamic decoupling removes
the possibility of sharing the zero constraint amongst
different error channels. This is heuristically
reasonable.  We also see that one zero can effect
multiple channels under a decoupled design.

The only time that a zero does not spread its
influence over many channels is when the
corresponding zero direction has only one nonzero
component.  We then say that the corresponding zero
direction is canonical.
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Example 24.2

Consider the following transfer function:

Go(s) =



s− 1
(s+ 1)2

2(s− 1)
(s+ 1)2

1
(s+ 1)2

ε

(s+ 1)2



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We see that z0 = 1 is a zero with direction h1
T = [1   0].

We see that is a canonical direction.  In this case, the
integral constraint becomes

for a step input on the first channel.  Note that, in this
case, this is the same as the SISO case.  Thus the
effect of the single zero is not spread over multiple
channels, i.e. there is no additional cost to decoupling
in this case.

∫ ∞

0

[1 0]T e(t)e−tdt =
∫ ∞

0

e1(t)e−tdt =
1
zo
= 1
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However, if we instead consider the plant

then the situation changes significantly.

In this case, z0 = 1 is a zero with direction h1
T = [�  -1].

We see that is a non-canonical direction.  Thus the
integral constant gives for a step reference in the first
channel that

Go(s) =




s− 1
(s+ 1)2

1
(s+ 1)2

2(s− 1)
(s+ 1)2

ε

(s+ 1)2



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and for a step reference in the second channel that

If, on the other hand, we insist on dynamic
decoupling, we obtain for a unit step reference in the
first channel that

and for a step reference in the second channel that

∫ ∞

0

[ε − 1]T e(t)e−tdt =
∫ ∞

0

(εe1(t)− e2(t))e−tdt =
ε

zo
= ε

∫ ∞

0

(εe1(t)− e2(t))e−tdt =
−1
zo
= −1

∫ ∞

0

e1(t)e−tdt =
1
zo
= 1

∫ ∞

0

e2(t)e−tdt =
1
zo
= 1
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Thus the effect of the zero has been spread by the
decoupling design over the two channels.

Clearly, in this example, a small amount of coupling
from channel 1 into channel 2 can be very helpful
when � ≠ 0.
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The time-domain constraints explored above are also
matched by frequency-domain constraints that are
the MIMO extensions of the SISO results presented
in Chapter 9.  This is  explored below.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

Poisson Integral Constraints on
MIMO Complementary Sensitivity

We will develop the MIMO versions of results
presented in Section 9.5.
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Note that the vector To(s)gi can be premultiplied by a
matrix Bi(s) to yield a vector τi(s):

where  Bi(s) is a diagonal matrix in which each
diagonal entry [Bi(s)]jj, is a scalar inverse Blaschke
product, constructed so that  ln(τij(s)) is an analytic
function in the open RHP.

τi(s) = Bi(s)To(s)gi =



τi1(s)
τi2(s)
...

τim(s)


 ; i = 1, 2, . . . , µp
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We also define a column vector            as follows:)( sg i

gi(s) = Bi(s)gi =



[Bi(s)]11gi1(s)

...
[Bi(s)]mmgim(s)


 =



gi1(s)
...

gim(s)



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We next define a set of integers,  �i, corresponding
to the indices of the nonzero elements of gi:

We then have the following result:

∇i = {r|gir �= 0}; i = 1, 2, . . . , µp
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Theorem 24.1  Complementary sensitivity and
unstable poles:
Consider a MIMO system with an unstable pole
located at s = η0 = α + jβ and having associated
directions g1, g2, …, gµp; then

(i)
1
π

∫ ∞

−∞
ln|[To(jω)]r∗gi|dΩ(ηo, ω) = ln|Bir(ηo)gir|; r ∈ ∇i; i = 1, 2, . . . , µp
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(ii)

        where

Proof:  See the book.

1
π

∫ ∞

−∞
ln|[To(jω)]r∗gi|dΩ(ηo, ω) ≥ ln |gir|; r ∈ ∇i; i = 1, 2, . . . , µp

dΩ(ηo, ω) =
α

α2 + (ω − β)2 dω =⇒
∫ ∞

−∞
dΩ(ηo, ω) = π



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

Remark:  Although the above result gives a precise
conclusion, it is a constraint that depends on the
controller.  The result presented in the following
corollary is independent of the controller.

Corollary:  Consider Theorem 24.1;  then the result
can also be written as
∫ ∞

−∞
ln |[To(jω)]rr| dΩ(ηo, ω) ≥

∫ ∞

−∞
ln

∣∣∣∣ [To(jω)]rrgir∑
k∈∇[To(jω)]rkgik

∣∣∣∣ dΩ(ηo, ω)
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Poisson Integral Constraints on
MIMO Sensitivity

When the plant has NMP zeros, a result similar to
the one presented above can be established for the
sensitivity function,  So(s).
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We first note that the vector hi
TSo(s) can be

postmiultiplied by a matrix Bi
′(s) to yield a vector

υi(s):

where Bi
′(s) is a diagonal matrix in which each

diagonal entry, [Bi
′(s) ]jj, is a scalar inverse Blaschke

product, constructed so that ln(υij(s)) is an analytic
function in the open RHP.

υi(s) = hT
i So(s)B′

i(s) =
[
υi1(s) υi2(s) . . . υim(s)

]
; i = 1, 2, . . . , µz
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We also define a row vector             where),( shi

hi(s) = hT
i (s)B

′
i(s) =



hT

i1(s)[B
′
i(s)]11
...

hT
im(s)[B

′
i(s)]mm


 = [

hi1(s) . . . him(s)
]
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We next define a set of integers  �i
′  corresponding to

the indices of the nonzero elements of hi:

We then have the following result:

∇′
i = {r|hir �= 0}; i = 1, 2, . . . , µz
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Theorem 24.2  Sensitivity and NMP zeros:
Consider a MIMO plant having a NMP zero at s = z0
= γ + jδ, which associated directions h1

T, h2
T, …,

hµz
T;  then the sensitivity in any control loop for that

plant satisfies
(i)

1
π

∫ ∞

−∞
ln|hT

i [So(jω)]∗r|dΩ(zo, ω) = ln|hir[B′
i(zo)]rr|; r ∈ ∇′

i; i = 1, 2, . . . , µp
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(ii)

where

Proof:  See the book.

1
π

∫ ∞

−∞
ln|hT

i [So(jω)]∗r|dΩ(zo, ω) ≥ ln |hir|; r ∈ ∇′
i; i = 1, 2, . . . , µp

dΩ(zo, ω) =
γ

γ2 + (ω − δ)2 dω =⇒
∫ ∞

−∞
dΩ(zo, ω) = π
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Corollary:  The result can also be written as

∫ ∞

−∞
ln |[So(jω)]rr| dΩ(zo, ω) ≥

∫ ∞

−∞
ln

∣∣∣∣ hir[So(jω)]rr∑
k∈∇′ hik[So(jω)]kr

∣∣∣∣ dΩ(zo, ω)
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Interpretation

The above theorem shows that in MIMO systems, as
is the case in SISO systems, there is a sensitivity
trade-off along a frequency-weighted axis.  Note
also, that in the MIMO case, there is a spatial
dimension (i.e. multiple outputs) aspect to the
constraints. To explore the issue further, we consider
the following lemma.
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Lemma 24.2:  Consider the lth column (l ∈ �i
′) in the

case when the lth sensitivity column, [So]*l, is
considered.  Furthermore, assume that some design
specifications require that

Then the following inequality must be satisfied:
|So(jω)|kl ≤ εkl � 1; ∀ω ∈ [0, ωc]; k = 1, 2, . . . ,m

‖[So]ll‖∞ +
m∑

k=1
k 	=l

∣∣∣∣hik

hil

∣∣∣∣ ‖[So]kl‖∞ ≥


εll +

m∑
k=1
k 	=l

∣∣∣∣hik

hil

∣∣∣∣ εkl




−
ψ(ωc)

π − ψ(ωc)
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Where

Proof:  See the book.

ψ(ωc) =
∫ ωc

o

[
γ

γ2 + (ω − δ)2 +
γ

γ2 + (ω + δ)2

]
dω
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These results are similar to those derived for SISO
control loops, because we also obtain lower bounds
for sensitivity peaks.  Furthermore, these bounds
grow with bandwidth requirements.

However, a major difference is that in the MIMO
case the bound refers to a linear combination of
sensitivity peaks.  This combination is determined by
the directions associated with the NMP zero under
consideration.
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An Industrial application:  Sugar
Mill

In this section, we consider the design of a controller
for a typical industrial process.  It has been chosen
because it includes significant multivariable
interactions, a nonself regulating nature, and
nonminimum-phase behavior.
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The sugar mill unit under consideration constitutes
one of multiple stages in the overall process.  A
schematic diagram of the Mill Train is shown on the
next slide.
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Figure 24.2: A sugar milling train
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A single stage of this Milling Train is shown below:

Figure 24.3:  Single crushing mill
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A photograph of the buffer chute and rolls is shown
on the next slide.
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For the purpose of maximal juice extraction, the process
requires the control of two quantities:  the buffer chute
height,  h(t), and the mill torque,  τ(t).  For the control of
these variables, the flap position, f(t), and the turbine
speed set-point ω(t), may be used.  For control purposes,
this plant can thus be modeled as a MIMO system with 2
inputs and 2 outputs.  In this system, the main
disturbance, d(t), originates in the variable feed to the
buffer chute.
In this example, regulation of the height in the buffer
chute is less important for the process than regulation of
the torque.
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After applying phenomenological considerations and
the performing of different experiments with
incremental step inputs, a linearized plant model was
obtained.  The outcome of the modeling stage is
below.
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Figure 24.4:  Sugar mill linearized block model
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The nominal plant model in RMFD form, linking the
inputs f(t) and ω(t) to the outputs τ(t) and h(t) is thus

where
Go(s) = GoN(s)[GoD(s)]−1

GoN(s) =
[
−5 s2 − 0.005s− 0.005
1 −0.0023(s+ 1)

]
; GoD(s) =

[
25s+ 1 0
0 s(s+ 1)

]
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We can now compute the poles and zeros of Go(s).  The
poles of Go(s) are the zeros of GoD(s), i.e., (-1, -0.04, 0).
The zeros of Go(s) are the zeros of GoN(s), i.e., the
values of s that are roots of det(GoN(s)) = 0;  this leads
to (-0.121, 0.137).  Note that the plant model has a
nonminimum-phase zero, located at s = 0.137.

We also have that

the direction associated with the NMP zero is given by

Go(0.137) =
[
−1.13 0.084
0.226 −0.0168

]

hT =
[
1 5

]
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Designs

Three designs were carried out and compared.  These
were:

(i) A Decentralized SISO Design
(ii) Full Dynamic Decoupled Design
(iii) Triangular Decoupled Design.

We leave the reader to follow the details of these
designs in the book.  We will simply summarize the
results here.
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SISO Design

Before attempting any MIMO design, we start by
examining a SISO design using two separate PID
controllers.  In this design, we initially ignore the
cross-coupling terms in the model transfer function
Go(s), and we carry out independent PID designs for
the resulting two SISO models, i.e.

G11(s) =
−5

25s+ 1
; and G22(s)

−0.0023
s
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The final controllers obtained from this design were:

To illustrate the limitations of this approach and the
associated trade-offs, Figure 24.5 shows the
performance of the loop under the resultant SISO-
designed PID controllers.

In this simulation, the (step) references and
disturbance were set as follows:

C1(s) = −0.5s+ 0.02
s

; and C2(s) = −20s
2 + 10s+ 0.2
s2 + s

r1(t) = µ(t− 1); r2(t) = µ(t− 100); d(t) = −10µ(t− 250)
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Figure 24.5: Loop performance with SISO design
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The following observations follow from the results
above.
(i) Interaction between the loops is strong.  In particular, we

observe that a reference change in channel 2 (height) will
induce strong perturbations of the output in channel 1 
(torque).

(ii) Both outputs exhibit nonminimum-phase behavior.  
However, due to the design-imposed limitation on the 
bandwidth, this is not very strong in either of the outputs in
response to a change in its own reference.  Notice however,
that the transient in y1 in response to a reference change in r2
is - because of the interaction neglected in the design - clearly
of nonminimum phase.
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(iii) The effects of the disturbance on the outputs show 
mainly low-frequency components.  This is due to the 
fact that abrupt changes in the feed rate are filtered out 
by the buffer.
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MIMO Designs
We now consider a full MIMO design.  We begin by
analyzing the main issues that will affect the MIMO
design.  They can be summarized as follows:
(i) The compensation of the input disturbance requires that

integration be included in the controller to be designed.
(ii) To ensure internal stability, the NMP zero must not be 

canceled by the controller.  Thus, C(s) should not have
poles at s = 0.137.

(iii) In order to avoid the possibility of input saturation, the
bandwidth should be limited.  We will work in the range
of 0.1-0.2[rad/s].
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(iv) The location of the NMP zero suggests that the dominant
mode in the channel(s) affected by that zero should not be
faster than e-0.137t.  Otherwise, responses to step reference
and step input disturbances will exhibit significant 
undershoot.

(v) The left direction, hT = [1   5], associated with the NMP
zero is not a canonical direction.  Hence, if dynamic 
decoupling is attempted, the NMP zero will affect both
channels.
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MIMO Design. Dynamic Decoupling

We first produce a decoupling design.
The appropriate controller in this case is given by

C(s) =



(25s+ 1)n11(s)M11(s)

d−(s)d+(s)
(25s+ 1)n12(s)M22(s)

d−(s)d+(s)

sn21M11(s)
d−(s)d+(s)

sn22(s)M22(s)
d−(s)d+(s)



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C(s) should not have poles at s = 0.137, so the
polynomial d+(s) should be canceled in the four fraction
matrix entries.   This implies that

Furthermore, we need to completely compensate the
input disturbance, so we require integral action in the
controller (in addition to the integral action in the
plant).  We thus make the following choices

where p11(s), l11(s), l22(s), and p22(s) are chosen by using
polynomial pole-placement techniques.

M11(0.137) =M22(0.137) = 0

M11(s) =
(s− 0.137)p11(s)

s2l11(s)
; and M22(s) =

(s− 0.137)p22(s)
s2l22(s)
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With these values, the controller is calculated.  A
simulation was run with this design and with the
same conditions as for the decentralized PID case,
i.e.,

The results are shown on the next slide.

r1(t) = µ(t− 1); r2(t) = µ(t− 100); d(t) = −10µ(t− 250)
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Figure 24.6: Loop performance with dynamic 
decoupling design
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The results shown above confirm the two key issues
underlying this design strategy:  the channels are
dynamically decoupled, and the NMP zero affects
both channels.
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MIMO Design. Triangular
Decoupling

Next we aim for a triangular closed loop transfer
function.
The resultant triangular structure will have the form

This leads to the complementary sensitivity

M(s) = Go(s)C(s) =
[
M11(s) 0
M21(s) M22(s)

]

To(s) =
[
T11(s) T12(s)
T21(s) T22(s)

]
=




M11(s)
1 +M11(s)

0

M21(s)
(1 +M11(s))(1 +M22(s))

M22(s)
1 +M22(s)



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The final controller is

C21(s) =
0.15(s+ 1)
s(s+ 0.121)

C11(s) =
−0.0058(25s+ 1)(s+ 0.0678)

s2(s+ 0.121)

C12(s) =
−(25s+ 1)(s2 − 0.005s− 0.005)(0.4715s+ 0.0146)

s2(s+ 0.121)(s+ 0.8715)

C22(s) =
−5(s+ 1)(0.4715s+ 0.0146)
s(s+ 0.121)(s+ 0.8715)
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Unit step references and a unit step disturbance were
applied, as follows:

The results are shown on the next slide.

r1(t) = µ(t− 1); r2(t) = −µ(t− 100); d(t) = −10µ(t− 250)
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Figure 24.7: Loop performance with triangular design
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The following observations can be made about the
above results:.
(i) The output of channel 1 is now unaffected by changes in

the reference for channel 2.  However, the output of 
channel 2 is affected by changes in the reference for 
channel 1.  The asymmetry is consistent with the choice
of a lower-triangular complementary sensitivity, To(s).

(ii) The nonminimum-phase behavior is evident in channel 2
but does not show up in the output of channel 1.  This 
has also been achieved by choosing a lower-triangular 
To(s);  that is, the open-loop NMP zero is a canonical 
zero of the closed-loop.
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(iii) The transient compensation of the disturbance in channel
1 has also been improved with respect to the fully 
decoupled loop.

(iv) The step disturbance is completely compensated in 
steady state.  This is due to the integral effect in the 
control for both channels.

(v) The output of channel one exhibits significant overshoot
(around 20%).  This was predicted for any loop having a
double integrator.
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Nonsquare Systems

In most of the above treatment, we have assumed
equal number of inputs and outputs.  However, in
practice, there are either excess inputs (fat systems)
or extra measurements (tall systems).  We briefly
discuss these two scenarios below.
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Excess inputs
Say we have m inputs and p outputs, where m > p.
In broad terms, the design alternatives can be
characterized under four headings:
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(a) Squaring up
Because we have extra degrees of freedom in the
input, it is possible to control extra variables
(even though they need not be measured).  One
possible strategy is to use an observer to estimate
the missing variables.
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(b) Coordinated control
Another, and very common, situation, is where p
inputs are chosen as the primary control
variables, but other variables from the remaining
m - p inputs are used in some fixed, or possibly
dynamic, relationships to the primary controls.
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(c) Soft load sharing
It one decides to simply control the available
measurements, then one can share the load of
achieving this control between the excess inputs.
This can be achieved via various optimization
approaches (e.g., quadratic).
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(d) Hard load sharing
It is often the case that one has a subset of the
inputs (say of dimension p) that is a preferable
choice from the point of view of precision or
economics, but that these have limited amplitude
or authority.  In this case, other inputs can be
called upon to assist.
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Excess outputs
Here we assume that p > m.  In this case, we cannot
hope to control each of the measured outputs
independently at all times.  We investigate three
alternative strategies
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(a) Squaring down
Although all the measurements should be used in
obtaining state estimates, only m quantities can
be independently controlled.  Thus, any part of
the controller that depends on state-estimate
feedback should use the full set of measurements;
however, set-point injection should be carried out
only for a subset of m variables.
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(b) Soft sharing control
If one really wants to control more variables than
there exist inputs, then it is possible to define
their relative importance by using a suitable
performance index.  For example, one might use
a quadratic performance index.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

(c) Switching strategies
It is also possible to take care of m variables at
any one time by use of a switching law.  This law
might include time-division multiplexing or some
more sophisticated decision structure.
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The availability of extra inputs or outputs can also be
very beneficial in allowing one to achieve a
satisfactory design in the face of fundamental
performance limitations.  We illustrate by an
example.
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Example 24.3:

Inverted pendulum.
We recall the inverted-pendulum problem discussed
in Example 9.4.
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Example of an Inverted Pendulum
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y(t)

M

m

l

f(t)

θ(t)

Figure 9.4:  Inverted pendulum
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We saw earlier that this system, when considered as
a single-input (force applied to the cart), single-
output (cart position) problem, has a real RHP pole
that has a larger magnitude than a real RHP zero.
This leads to a near impossible control system design
problem.  Thus, although this problem is, formally,
controllable, it was argued that this set-up, when
viewed in the light of fundamental performance
limitations, is practically impossible to control, on
account of severe and unavoidable sensitivity peaks.
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However, the situation changes dramatically if we
also measure the angle of the pendulum.  This leads
to a single input (force) and two outputs (cart
position, y(t), and angle, θ(t)).  This system can be
represented in block-diagram form as on the next
slide.
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Figure 24.8: One-input, two-output inverted-
pendulum model

f(t) −K

(s − a)(s + a)

−(s − b)(s + b)

s2

θ(t)

y(t)
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Note that this nonsquare system has poles at (0, 0, a, -a)
but no finite (MIMO) zeros.  Thus, one might reasonably
expect that the very severe limitations which existed for
the SISO system no longer apply to this nonsquare
system.
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We use K = 2, a = √20, and b = √10.  Then a suitable
nonsquare controller turns out to be

where  R(s) = L[r(t)] is the reference for the cart
position, and

U(s) =
[
Cy(s) Cθ(s)

] [
R(s)− Y (s)

−Θ(s)

]

Cy(s) = −4(s+ 0.2)
s+ 5

; Cθ(s) = −150(s+ 4)
s+ 30



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

The next slide shows the response of the closed-loop
system for r(t) = µ(t-1), i.e., a unit step reference
applied at t = 1.
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Figure 24.9: Step response in a nonsquare control 
for the inverted pendulum
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Note that these results are entirely satisfactory.  An
interesting observation is that the nonminimum-phase
zero lies between the input and y(t).  Thus, irrespective
of how the input is chosen, the performance limitations
due to that zero remain.  For example, we have for a unit
reference step that

In particular, the presence of the nonminimum-phase
zero places an upper limit on the closed-loop bandwidth
irrespective of the availability of the measurement of the
angle.

∫ ∞

0

[r(t)− y(t)] e−btdt =
1
b
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The key issue that explains the advantage of using
nonsquare control in this case is that the second
controller effectively shifts the unstable pole to the
stability region.  Thus there is no longer a conflict
between a small NMP zero and a large unstable pole,
and we need only to pay attention to the bandwidth
limitations introduced by the NMP zero.
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Summary
❖ Analogously to the SISO case, MIMO performance

specifications can generally not be addressed
independently from another, because they are linked by a
web of trade-offs.

❖ A number of the SISO fundamental algebraic laws of
trade-off generalize rather directly to the MIMO case:

◆ So(s) = I - To(s), implying a trade-off between speed of response to
a change in reference or rejecting disturbances (So(s) small) versus
necessary control effort, sensitivity to measurement noise, or
modeling errors (To(s) small);

◆ Ym(s) = -To(s)Dm(s), implying a trade-off between the bandwidth of
the complementary sensitivity and sensitivity to measurement
noise.
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◆ Suo(s) = [Go(s)]-1To(s), implying that a complementary sensitivity
with bandwidth significantly higher than the open loop will
generate large control signals;

◆ Sio(s) = So(s)Go(s), implying a trade-off between input and output
disturbances;  and

◆ S(s) = So(s)S∆(s) = [I + G∆1(s)To(s)]-1, implying a trade-off
between the complementary sensitivity and robustness to modeling
errors.
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❖ There also exist frequency- and time-domain trade-offs due
to unstable poles and zeros.

◆ Qualitatively, they parallel the SISO results in that (in a MIMO
measure) low bandwidth in conjunction with unstable poles is
associated with increasing overshoot, whereas high bandwidth in
conjunction with unstable zeros is associated with increasing
undershoot.

◆ Quantitatively, the measure in which the above is true is more
complex than in the SISO case:  the effects of under- and
overshoot, as well as of integral constraints, pertain to linear
combinations of the MIMO channels.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 24

❖ MIMO systems are subject to the additional design
specification of desired degree of decoupling.

❖ Decoupling is related to the time- and frequency-domain
constraints via directionality.

◆ The constraints due to open-loop NMP zeros with noncanonical
directions can be isolated in a subset of outputs, if triangular
decoupling is acceptable.

◆ Alternatively, if dynamic decoupling is enforced, the constraint is
dispersed over several channels.

❖ Advantages and disadvantages of completely decentralized
control, full diagonal dynamical and triangular decoupling
designs were illustrated with an industrial case study.


