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Chapter 26

Decoupling
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An idealized requirement in MIMO control-system design
is that of decoupling.  If a plant is dynamically decoupled,
then changes in the set-point of one process variable lead
to a response in that process variable but all other process
variables remain constant.  The advantages of such a
design are intuitively clear:  e.g., a temperature may be
required to be changed, but it may be undesirable for
other variables (e.g., pressure) to suffer any associated
transient. Full dynamic decoupling is a very stringent
requirement. Thus, in practice, it is more usual to seek
dynamic decoupling over some desired bandwidth.
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This chapter describes the design procedures
necessary to achieve dynamic decoupling.  In
particular, we discuss

◆ dynamic decoupling for stable minimum-phase systems

◆ dynamic decoupling for stable nonminimum-phase
systems

◆ dynamic decoupling for open-loop unstable systems
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As might be expected, full dynamic decoupling is a
strong requirement and is generally not cost-free.
We will thus also quantify the performance cost of
decoupling by using frequency-domain procedures.
These allow a designer to assess a-priori whether the
cost associated with decoupling is acceptable in a
given application.
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Of course, some form of decoupling is a very common
requirement.  For example, static decoupling is almost
always a design requirement.  The question then
becomes, over what bandwidth will decoupling
(approximately) be asked for?  It will turn out that the
additional cost of decoupling is a function of open-
loop poles and zeros in the right-half plane.  Thus if
one is restricting decoupling in some bandwidth, then
by focusing attention on those open-loop poles and
zeros that fall within this bandwidth, one can get a feel
for the cost of decoupling over that bandwidth.
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We will also examine the impact of actuator
saturation on decoupling.  In the case of static
decoupling, it is necessary to avoid integrator wind-
up.  This can be achieved by using methods that are
analogous to the SISO case treated in Chapter 11.
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Stable Systems

We first consider the situation in which the open-loop
poles of the plant are located in desirable locations.
We will employ the affine-parameterization
technique described in Chapter 25 to design a
controller that achieves full dynamic decoupling.
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Stable Systems:
Part 1 - Minimum-Phase Case
We refer to the general Q-design procedure outlined in
Chapter 25.
To achieve dynamic decoupling, we make the following
choice for Q(s).

Where ξξξξR(s) is the right interactor, and p1(s), p2(s), …
pm(s) are stable polynomials chosen to make Q(s) proper.
The polynomials p1(s), p2(s), … pm(s) should be chosen
to have unit d.c. gain.

Q(s) = ξR(s)[ΛR(s)]−1DQ(s)
ΛR(s) = Go(s)ξR(s)

DQ(s) = diag
(

1
p1(s)

,
1

p2(s)
, · · · , 1

pm(s)

)
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We observe that, with the above choice, we achieve
the following nominal complementary sensitivity:

To(s) = Go(s)Q(s)

= Go(s)ξR(s)[ΛR(s)]−1DQ(s)

= Go(s)ξR(s)[Go(s)ξR(s)]
−1DQ(s)

= diag
(

1
p1(s)

,
1

p2(s)
, · · · , 1

pm(s)

)



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

We see that this is diagonal, as required.  The
associated control-system structure would then be as
shown below:

Figure 26.1: IMC decoupled control of stable MIMO
plants
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Actually, the above design is not unique.  For
example, an alternative choice for Q(s) is

where DQ(s) is given by
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Q(s) = [ΛL(s)]−1ξL(s)DQ(s)



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

Note also that DQ(s) can have the more general
structure

where t1(s), t2(s), …, tm(s) are proper stable transfer
functions having relative degrees equal to the
corresponding column degrees of the left interactor
for Go(s).  The transfer functions t1(s), t2(s), …, tm(s)
should be chosen to have unit d.c. gain.

DQ(s) = diag (t1(s), t2(s), · · · , tm(s))
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Example 26.1

Consider a stable 2 × 2 MIMO system having the
nominal model

Choose a suitable matrix Q(s) to control this plant,
using the affine parameterization, in such a way that
the MIMO control loop is able to track references of
bandwidths less than or equal to 2[rad/s] and 4[rad/s]
in channels 1 and 2, respectively.

Go(s) =
1

(s+ 1)2(s+ 2)

[
2(s+ 1) −1
(s+ 1)2 (s+ 1)(s+ 2)

]
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We will aim to obtain a complementary sensitivity
matrix given by

where T11(s) and T22(s) will be chosen to have
bandwidths 2[rad/s] and 4[rad/s] in channels 1 and 2,
respectively.

To(s) = diag(T11(s), T22(s))
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Then, Q(s) must ideally satisfy

We choose the structure
from which we see that To(s) = DQ(s).  Hence the
relative degrees of T11(s) and T22(s) will be chosen
equal to the degrees of the first and second column of
the left interactor for Go(s), respectively.

Q(s) = [Go(s)]−1To(s).

Q(s) = [ΛL(s)]−1ξL(s)DQ(s)
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The left interactor ξξξξL(s) is

Then

ξL(s) = diag
(
(s+ α)2, (s+ α)

)
; α ∈ R+

Q(s) = [ξL(s)Go(s)]−1ξL(s)To(s).
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Hence, Q(s) is proper if and only if To(s) is chosen so
as to make ξξξξL(s)To(s) proper.

Thus, possible choices for T11(s) and T22(s) are

T11(s) =
4

s2 + 3s+ 4
; and T22(s) =

4(s+ 4)
s2 + 6s+ 16
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To obtain the final expression for Q(s), we next need
to compute [Go(s)]-1, which is given by

[Go(s)]−1 =
s+ 2
2s+ 5

[
(s+ 1)(s+ 2) 1
−(s+ 1)2 2(s+ 1)

]
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We finally obtain

Q(s) = [Go(s)]−1To(s) =
s+ 2
2s+ 5



4(s+ 1)(s+ 2)
s2 + 3s+ 4

4(s+ 4)
s2 + 6s+ 16

−4(s+ 1)2
s2 + 3s+ 4

8(s+ 4)(s+ 1)
s2 + 6s+ 16



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The above design procedure is limited to minimum-
phase systems.  In particular, it is clear that Q(s),
chosen as above, is stable if and only if Go(s) is
minimum phase, because [ΛΛΛΛR(s)]-1 and [ΛΛΛΛL(s)]-1

involve an inverse of Go(s).  We therefore need to
modify Q(s) so as to ensure stability when Go(s) is
nonminimum phase.  A way of doing this is
described below.
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Stable Systems:
Part 2 - Nonminimum-Phase Case

We will begin with the state space realization for
[ΛΛΛΛR(s)]-1, defined by a 4-tuple (Aλ, Bλ, Cλ, Dλ).  We
will denote by ũ(t) the input to this system.  Our aim
is to modify [ΛΛΛΛR(s)]-1 so as to achieve two objectives:

(i) render the transfer function stable, whilst;
(ii) retaining its diagonalizing properties.
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To this end, we define the following subsystem,
which is driven by the ith component of ũ(t)

where υi(t) ∈  �m, ũi(t) ∈  �, and (Ai, Bi, Ci, Di) is a
minimal realization of the transfer function from the
ith component of ũ(t) to the complete vector output
ū(t).  Thus (Ai, Bi, Ci, Di) is a minimal realization of
(Aλ, Bλei, Cλ, Dλei), where ei is the ith column of the
m × m identity matrix.

ẋi(t) = Aixi(t) +Biũi(t)
υi(t) = Cixi(t) +Diũi(t)
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We next apply stabilizing state feedback to each of
these subsystems - i.e., we form

where           ∈ �.  The design of Ki can be done in
any convenient fashion - e.g., by linear quadratic
optimization.

)( tri

ũi(t) = −Kixi(t) + ri(t); i = 1, 2, . . . ,m
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Finally we add together the m vectors υ1(t), υ2(t), …
υm(t) to produce an output, which can be renamed
ū(t):

We then have the following result:

u(t) =
m∑

i=1

υi(t)
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Lemma 26.1:
(a) The transfer function from

to ū(t) is given by

where

(b)ΛΛΛΛR(s)W(s) is a diagonal matrix.
(c) W(s) has a state space realization as described above.
Proof:  See the book.

T
m trtrtrtr )]()()([)( 21 �=

)()]([)( 1 sss zR DΛW −=

{ }11

11

]][1[)(
)][()]([

−−
λλ

−
λλ

−

−+=
+−=Λ

iiiz BAIKD
I

sdiags
DBAsCsR



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

Returning now to the problem of determining Q(s),
we choose

This is equivalent to

Then

Q(s) = ξR(s)W(s)DQ(s)

Q(s) = ξR(s)[ξR(s)]
−1[Go(s)]−1Dz(s)DQ(s)

Q(s) = [Go(s)]−1Dz(s) diag {t1(s), t2(s), · · · , tm(s)}
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Finally, we see that the resulting nominal
complementary sensitivity is

Note this complementary sensitivity is achieved
without requiring any unstable pole-zero
cancellations, and that any nonminimum-phase zeros
in the plant are retained in To(s), which is a
requirement for internal stability.

To(s) = diag
{
[1 +Ki[sI− Ai]−1Bi]−1ti(s)

}
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The reader will notice that it is implicit in the above
design that some of the NMP zeros have been
duplicated and appear in multiple diagonal elements.
At worst, each NMP zero will appear in every
diagonal term.  Precisely how many zeros will appear
and in which channel, depends on the degree of each
minimum realization involved.

This spreading of NMP zeros is one of the costs
associated with demanding full diagonal decoupling.
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Decoupling Invariants

Actually, the NMP zeros appearing in

are diagonalizing invariants and appear in all possible
diagonalized closed loops.  Thus, spreading NMP
dynamics into other channels is a trade-off inherently
associated with decoupling.

The final implementation of Q(s) is as shown below.

To(s) = diag
{
[1 +Ki[sI− Ai]−1Bi]−1ti(s)

}
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Figure 26.2: Diagonal decoupling MIMO controller
(Q(s))
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Example 26.2

Consider a plant having the nominal model

Go(s) =
1

(s+ 1)2

[
s+ 2 −3
−2 1

]
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This model has a NMP zero at s = 4.  To synthesize a
controller following the ideas presented above, we first
compute a right interactor matrix, which turns out to
have the general form ξξξξR(s) = diag{s + α, (s + α)2}.
For numerical simplicity, we choose α = 1.  Then

and a state space realization for [ΛΛΛΛR(s)]-1 is

[ΛR(s)]−1 = [Go(s)ξR(s)]
−1 =

1
s− 4

[
s+ 1 3(s+ 1)
2 s+ 2

]

A =
[
4 0
0 4

]
; B = I ; C =

[
5 15
2 6

]
; D =

[
1 3
0 1

]
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We next compute (Ai, Bi, Ci, Di) as a minimal
realization of (Aλ, Bλei, Cλ, Dλei), for i = 1, i = 2.
This computation yields

A1 = 4 B1 = 1 C1 = [5 2]T D1 = [1 0]T

A2 = 4 B2 = 1 C2 = [15 6]T D2 = [3 1]T
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These subsystems can be stabilized by state feedback
with gains K1 and K2, respectively.  For this case,
each gain is chosen to shift the unstable pole at s = 4
to a stable location, say s = -10, which leads to K1 =
K2 = 14.  Thus, Dz(s) is a 2 × 2 diagonal matrix given
by

Dz(s) =
s− 4
s+ 10

I
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We finally choose DQ(s) to achieve a bandwidth
approximately equal to 3[rad/s], say

DQ(s) = diag
{

−9(s+ 10)
4(s2 + 4s+ 9)

−90
4(s2 + 4s+ 9)

}
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Note that the elements t1(t) and t2(s) in DQ(s) have
been chosen of relative degree equal to the
corresponding column degrees of the interactor ξξξξR(s).
Also, their d.c. gains have been chosen to yield unit
d.c. gain in the complementary sensitivity To(s),
leading to

To(s) = diag
{

−9(s− 4)
4(s2 + 4s+ 9)

−90(s− 4)
4(s+ 10)(s2 + 4s+ 9)

}
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Pre- and PostDiagonalization

The transfer-function matrix Q(s) presented in

is actually a right-diagonalizing compensator for a
stable (but not necessarily minimum-phase) plant.
This can be seen by noting that

where

Q(s) = ξR(s)W(s)DQ(s)

Go(s)ΠR(s) = diag
{
[1 +Ki[sI− Ai]−1Bi]−1ti(s)

}

ΠR(s) = Q(s)
= ξR(s)W(s)DQ(s)
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It is sometimes also desirable to have a left-
diagonalizing compensator.  We could derive such a
compensator from first principles.  However, a simple
way is to first form

We find a right-diagonalizing compensator               for
   by using the method outlined above.  We then

let                                 which has the following property.

Which is a diagonal matrix by construction.

)( sRΠ
)( soG

,)()( Tss RL Π=Π

ΠL(s)Go(s) = Π
T

R(s)Go(s)T = [Go(s)ΠR(s)]T

Go(s) = GT
o (s)
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Unstable Systems

We next turn to the problem of designing a
decoupling controller for an unstable MIMO plant.
Here we have an additional complexity:  some
minimal feedback is necessary to ensure stability. To
gain insight into this problem, we describe four
alternative design choices in the book;  namely
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(i) a two-degree-of-freedom design based on
prefiltering the reference;

(ii) a two-degree-of-freedom design using the affine
parameterization;

(iii) a design based on one-degree-of-freedom state
feedback;  and

(iv) a design integrating both state feedback and the
affine parameterization.
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Two-Degree-of-Freedom Design
Based on PreFiltering the Reference

If one requires full dynamic decoupling for
reference-signal changes only, then this can be
readily achieved by first stabilizing the system by
using some suitable controller C(s) and then using
prefiltering of the reference signal.  The essential idea
is illustrated on the next slide.
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Figure 26.3: Prefilter design for full dynamic 
decoupling
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Say that the plant has transfer function Go(s);  then the
closed-loop transfer function linking R(s) to Y(s) is

To achieve decoupling, one then need only choose
H(s) as a right-diagonalizing precompensator for the
stable transfer function [I + Go(s)C(s)]-1Go(s)C(s).

Gcl(s) =
[
I+Go(s)C(s)

]−1
Go(s)C(s)H(s)
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Example 26.4

Consider the plant

where
Go(s) = GoN(s)[GoD(s)]−1

GoN(s) =
[
−5 s2

1 −0.0023

]
; GoD(s) =

[
25s+ 1 0
0 s(s+ 1)2

]
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The state space model for the system is

where

We will design a stabilizing controller under the
architecture shown below.

ẋp(t) = Aoxp(t) +Bou(t)
y(t) = Coxp(t) +Dou(t)

Ao =



−0.04 0 0 0
0 −2 −1 0
0 1 0 0
0 0 1 0


 Bo =



1 0
0 1
0 0
0 0




Co =
[
−0.2 1 0 0
0.04 0 0 −0.0023

]
Do = 0
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Figure 26.4: Optimal quadratic design with integral
action
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We design an observer for the state xp(t), given the
output y(t).  This design uses Kalman-filter theory
with Q = BoBo

T and R = 0.05I2×2.
The optimal observer gains turn out to be

J =



−3.9272 1.3644
2.6120 0.1221
−0.6379 0.1368
−2.7266 −4.6461



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We wish to have zero steady-state errors in the face
of step input disturbances.  We therefore introduce an
integrator with transfer function I/s at the output of
the system (after the comparator).  That is, we add

ż(t) = −y(t) = −Coxp(t)
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We can now define a composite state vector
      leading to the composite model

where

TTT
p tztxtx )]()([)( =

ẋ(t) = Ax(t) +Bu(t)

A =
[

Ao 0
−Co 0

]
; B =

[
Bo

0

]
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We next consider the composite system and design a
state variable feedback controller via LQR theory.

We choose

Ψ =


Co

TCo 0 0
0 0.005 0
0 0 0.1


 ; Φ = 2I2×2
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Leading to the feedback gain K = [K1   K2], where

K1 =
[
0.1807 −0.0177 0.1011 −0.0016
−0.0177 0.1496 0.0877 0.0294

]
; K2 =

[
0.0412 −0.1264
0.0283 0.1844

]
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This leads to the equivalent closed loop shown below
(where we have ignored the observer dynamics,
because these disappear in steady state).

Figure 26.5: Equivalent closed loop (ignoring the 
observer dynamics)
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y(t)
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s
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r(t)
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The resulting closed-loop responses for unit step
references are shown on the next slide where r1(t) =
µ(t - 1) and r2(t) = -µ(t - 501).  Note that, as expected,
the system is statically decoupled, but significant
dynamic coupling occurs during transients, especially
following the step in the second reference.
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Figure 26.6: Statically decoupled control
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We next design a precompensator to achieve full
dynamic decoupling for reference signals.   The
closed loop has the transfer function

where

This is a stable proper transfer function.  Note,
however, that this is nonminimum phase, because the
original plant was nonminimum phase.

To(s) = (I+ G̃(s))−1G̃(s)

G̃(s) = Co(sI− Ao +BoK1)−1BoK2
1
s
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We use the techniques outlined above to design a
right inverse that retains dynamic decoupling in the
presence of nonminimum-phase zeros.  To use those
techniques, the equivalent plant is the closed-loop
system with transfer function
and with state space model given by the 4-tuple (Ae,
Be, Ce, 0), where

To(s) = (I+ G̃(s))−1G̃(s)

Ae =
[
Ao − BoK1 BoK2

−Co 0

]
; Be =

[
0 I

]T ; Ce =
[
Co 0

]



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

A suitable interactor for this closed-loop system is
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This leads to an augmented system having the state
space model                                with( )eeee D,CBA ′′′′ ,,

eeee
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The exact inverse then has the state space model
(Aλ, Bλ, Cλ, Dλ), where

1
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We now form the two subsystems as described
earlier.  We form minimal realizations of these two
systems, which we denote by (A1, B1, C1, D1) and
(A2, B2, C2, D2) .  We determine stabilizing feedback
for these two systems by using LQR theory with
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We then implement the precompensator as in Figure
26.2, where we choose

where  K1, K2 now represent the stabilizing gains for
the two subsystems.
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The resulting closed-loop responses for step references
are shown on the next slide, where r1(t) = µ(t - 1) and
r2(t) = -µ(t - 501).  Note that, as expected, the system is
now fully decoupled from the reference to the output
response.
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Figure 26.7: Dynamically decoupled control
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The reader is invited to simulate and study the
input/output behavior of the prefilter, H(s).  Note the
subtly coordinated interaction in the reference signals
as seen by the plant (output of H(s)).  It would be
virtually impossible for a human operator to
manipulate the references, by hand, so that one plant
output changed without inducing a transient in the
the other output.
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Other decoupling designs

It is also possible to obtain the following designs:-

❖   Two-Degree-of-Freedom Design Based on the 
Affine Parameterization

❖ One-Degree-of-Freedom Design using State 
Feedback

We leave the reader to explore the details in the book.
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Zeros of Decoupled and Partially
Decoupled Systems

We have seen above that NMP zeros and unstable
poles significantly affect the ease with which
decoupling can be achieved.  Indeed, the analysis
above suggests that a single RHP zero or pole might
need to be dealt with in multiple loops if decoupling
is a design requirement.  More details are given in the
book.
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Frequency-Domain Constraints for
Dynamically Decoupled Systems

Further insight into the multivariable nature of
frequency-domain constraints can be obtained by
examining the impact of decoupling on sensitivity
trade-offs.

Consider a MIMO control loop where So(s) and,
consequently, To(s) are diagonal stable matrices.

We then have the following theorem which gives an
integral constraint on sensitivity when a diagonal
decoupling requirement is imposed.
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Lemma 26.3:  Consider a MIMO plant with a NMP
zero at s = z0 = γ + jδ, with associated directions h1

T,
h2

T … hµz
T.

Assume, in addition, that So(s) is diagonal;  then, for
any value of r such that hir ≠ 0,

Proof:  See the book.

∫ ∞

−∞
ln|[So(jω)]rr|dΩ(zo, ω) = 0; for r ∈ ∇′

i
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Corollary:  Under the same hypothesis of the above
Lemma, if the MIMO loop is decoupled (diagonal
sensitivity matrix) and the design specification is
|[So(jω)]rr| ≤ �rr << 1 for ω ∈  [0, ωr], then

Proof:  See the book.

||[So(jω)]rr||∞ ≥
(
1
εrr

) ψ(ωr)
π−ψ(ωr)



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

We also have the following corresponding result for
the complementary sensitivity function.

Lemma 26.4:  Consider a MIMO system with an
unstable pole located at s = η0 = α + jβ and having
associated directions, g1, …, gµr.  Assume, in
addition, that To(s) is diagonal;  then, for any value of
r such that  gir ≠ 0,

Proof:  See the book.

∫ ∞

−∞
ln|[To(jω)]rr|dΩ(ηo, ω) = 0; for r ∈ ∇i
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The Cost of Decoupling

We can now investigate the cost of dynamic
decoupling, by comparing the results in Chapter 24
with those in the above results.  To make the analysis
more insightful, we assume that the geometric
multiplicity µz of the zero is 1 - i.e., there is only one
left direction, h1, associated with the particular zero.
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We  first assume that the left direction (h1) has more
than one element different from zero - i.e., that the
cardinality ∇ i′ is larger than one.  We then compare
the integral constraint applicable in the absence of
coupling:

to the following integral constraint

(applicable to a dynamically decoupled MIMO loop).

∫ ∞

−∞
ln |[So(jω)]rr| dΩ(zo, ω) ≥

∫ ∞

−∞
ln

∣∣∣∣ hir[So(jω)]rr∑
k∈∇′ hik[So(jω)]kr

∣∣∣∣ dΩ(zo, ω)

∫ ∞

−∞
ln|[So(jω)]rr|dΩ(zo, ω) = 0; for r ∈ ∇′

i
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In the first equation, we see that the right-hand side of
the inequality can be negative for certain combinations
of nonzero off-diagonal sensitivities.  Thus, it is feasible
to use off-diagonal sensitivities to reduce the lower
bound on the diagonal sensitivity peak.  This can be
interpreted as a two-dimensional sensitivity trade-off,
because it involves a spatial as well as a frequency
dimension.
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We recall that the capacity to use spatial interaction
to reduce sensitivity peaks is a feature of MIMO
systems.  The idea is that sensitivity dirt can be
shared between outputs.  This is shown in cartoon
form on the next slide.
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Spatial Allocation of Sensitivity

Sensitivity dirt Multiple piles
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The conclusion from the above analysis is that it is
less restrictive, from the point of view of design
trade-offs and constraints, to have an interacting
MIMO control loop, compared to a dynamically
decoupled one.  However, it is a significant fact that
to draw these conclusions we relied on the fact that h1
had more than one nonzero element.  If that is not the
case, i.e., if only h1r ≠ 0 (the corresponding direction
is canonical), then there is no additional trade-off
imposed by requiring a decoupled closed loop.
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Example

Consider the following MIMO system:

where

Go(s) =




1− s

(s+ 1)2
s+ 3

(s+ 1)(s+ 2)

1− s

(s+ 1)(s+ 2)
s+ 4
(s+ 2)2


 = GoN(s)[GoD(s)]−1I

GoN(s) =
[

(1− s)(s+ 2)2 (s+ 1)(s+ 2)(s+ 3)
(1− s)(s+ 2)(s+ 3) (s+ 1)2(s+ 4)

]

GoD(s) = (s+ 1)2(s+ 2)2
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Zeros
The zeros of the plant are the roots of det(GoN(s)) - i.e.,
the roots of -s6 - 11s5 - 43s4 - 63s3 + 74s + 44.  Only one
of these roots, namely the one located at s = 1, lies in
the RHP.  Thus, z0 = 1, and

We then compute Go(1) as

From which it can be seen that the dimension of the null
space is µz = 1 and the (only) associated (left) direction
is hT = [5 - 6].

dΩ(zo, ω) =
1

1 + ω2
dω

Go(1) =

[
0 2

3

0 5
9

]
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Clearly, this vector has two nonzero elements, so we
could expect that there will be additional design
trade-offs arising from decoupling.  (The direction of
the RHP zero is not canonical).
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Using the earlier theorem for r = 1 and r = 2, we
obtain, respectively for the non diagonally coupled
case:

1
π

∫ ∞

∞
ln |5[So(jω)]11 − 6[So(jω)]21|

1
1 + ω2

dω ≥ ln(5)

1
π

∫ ∞

∞
ln |5[So(jω)]12 − 6[So(jω)]22|

1
1 + ω2

dω ≥ ln(6)
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If we impose typical design requirements, we have,
for the interacting MIMO loop, that

1
π

∫ ∞

∞
ln |5[So(jω)]11 − 6[So(jω)]21|

1
1 + ω2

dω ≥ ln(5)

1
π

∫ ∞

∞
ln |5[So(jω)]12 − 6[So(jω)]22|

1
1 + ω2

dω ≥ ln(6)
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If we require dynamic decoupling, the sensitivity
integrals become

With dynamic decoupling and typical design
requirements, we have

1
π

∫ ∞

∞
ln |[So(jω)]11|

1
1 + ω2

dω ≥ 0

1
π

∫ ∞

∞
ln |[So(jω)]22|

1
1 + ω2

dω ≥ 0

‖[So]11‖∞ ≥
(
1
ε11

) ψ(ωc)
π−ψ(ωc)

‖[So]22‖∞ ≥
(
1
ε22

) ψ(ωc)
π−ψ(ωc)
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To quantify the relationship between the magnitude of
the bounds in the coupled and the decoupled situations,
we use an indicator κ1d, formed as the quotient between
the right-hand sides of inequalities

and

‖[So]11‖∞ +
6
5
‖[So]21‖∞ ≥

(
1

ε11 + 6
5ε21

) ψ(ωc)
π−ψ(ωc)

‖[So]22‖∞ +
5
6
‖[So]12‖∞ ≥

(
1

ε22 + 5
6ε21

) ψ(ωc)
π−ψ(ωc)

‖[So]11‖∞ ≥
(
1
ε11

) ψ(ωc)
π−ψ(ωc)

‖[So]22‖∞ ≥
(
1
ε22

) ψ(ωc)
π−ψ(ωc)
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It follows that the indicator of the cost of decoupling
is given by:

Thus, λ1� is a relative measure of interaction in the
direction from channel 1 to channel 2.

κ1d
�
=

(
1 +

6
5
λ1ε

)− ψ(ωc)
π−ψ(ωc)

where λ1ε
�
=

ε21
ε11



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

The issues discussed above are captured in graphical
form in the following figure.

Figure 26.10: Cost of decoupling in terms of 
sensitivity-peak lower bounds
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In the above figure, we show a family of curves, each
corresponding to a different bandwidth ωc.  Each
curve represents, for the specified bandwidth, the
ratio between the bounds for the sensitivity peaks as
a function of the decoupling indicator,  λ1�.  We can
summarize our main observations as follows:

a) When λ1� is very small, there is virtually no effect
of channel 1 into channel 2 (at least in the 
frequency band [0, ωc]);  then, the bounds are 
very close (κ1d ≈ 1).
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b) As λ1� increases, we are allowing the off-
diagonal sensitivity to become larger than the
diagonal sensitivity in [0, ωc]).  The effect of this
manifests itself in κ1d < 1, i.e. in bounds for the
sensitivity peak that are smaller than for the
decoupled situation.

c) If we keep λ1� fixed and we increase the
bandwidth, then the advantages of using a
coupled system also grow.
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We see, from the above example, that decoupling can
be relatively cost-free, depending upon the
bandwidth over which one requires that the closed-
loop system operate.  This is in accord with intuition,
because zeros become significant only when one
pushes the bandwidth beyond their locations.
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We illustrate this conclusion for the system described
above.
Consider the plant

which has an ORHP zero at s = 1 with output direction
equal to Ψ* = [5, -6].
Since this direction is not canonical, we can argue from
the preceding discussion that there will be a cost in
sensitivity associated with achieving diagonal decoupling.
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If we require |Sik(jω)| ≤ αik, for ω in [-ω1, ω1],  i = 1, 2, then

Constraints on S11 harden as the system is more decoupled.

RHS as a function of α11, for ω1 = 0.3 and for: α21 = 0, 0.01, 0.05,
0.1 (plots 1 to 4).
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We now apply a particular design technique, (we will
not go into details of the design, but λ = 1 gives full
dynamic decoupling and λ = 0 gives a triangular
design) that allows different degrees of decoupling
while keeping other design parameters essentially
constant.  The resultant S is

�
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The next slide shows the effect of the extent of
decoupling (measured by λ) on the magnitude of the
sensitivity S11(jω).
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Effect of decoupling on S11(jω)

We see that the closer we are to full decoupling the
greater the peak in sensitivity.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

Summary of Cost of Decoupling
❖ Depending on directionality properties of the zero-pole

structure of the plant, design constraints in MIMO may
relax with respect to the SISO case (the cost of ORHP zeros
and poles is distributed in S or T).

❖ If the zero direction is not canonical, there is an additional
cost associated to decoupling, as restrictions concentrate on
the diagonal elements.

❖ If the zero direction is canonical, the system is structurally
equivalent to the SISO system, in terms of constraints.
There is no additional cost associated with decoupling.
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Input Saturation

Finally, we explore the impact that input saturation
has on linear controllers that enforce decoupling.  We
will also develop anti-wind-up mechanisms that
preserve decoupling in the face of saturation, using
methods that are the MIMO equivalent of the SISO
anti-wind-up methods of Chapter 11.
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We assume that our plant is modeled as a square
system, with input u(t) ∈  �m and output y(t) ∈  �m.
We also assume that the plant input is subject to
saturation.  Then if u(i)(t) corresponds to the plant
input in the ith channel, i = 1, 2, …, m, the saturation
is described by

u(i)(t) = Sat〈û(i)(t)〉 �
=




u
(i)
max if û(i)(t) > u

(i)
max,

û(i)(t) if u(i)
min ≤ û(i)(t) ≤ u

(i)
max,

u
(i)
min if û(i)(t) < u

(i)
min.
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For simplicity of notation, we further assume that the
linear region is symmetrical with respect to the
origin, i.e.                                  i = 1, 2, …, m.  We
will describe the saturation levels by usat ∈  �m, where

The essential problem with input constraints, as in
Chapter 11, is that the control signal can wind up
during periods of saturation.

,|||| )()(
max

)(
min

i
sat

ii uuu ==

usat
�
=

[
u

(1)
sat u

(2)
sat . . . u

(m)
sat

]T
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MIMO Anti-Wind-Up Mechanism

In Chapter 11, the wind-up problems were dealt with by
using a particular implementation of the controller.
This idea can be easily extended to the MIMO case, as
follows.

Assume that the controller transfer-function matrix,
C(s), is biproper- i.e.,

where C∞ is nonsingular.   The multivariable version of
the anti-wind-up scheme if as shown on the next slide.

∞
∞→

=CC )(lim s
s
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Figure 26.11: Anti-wind-up controller implementation.
MIMO case

v(t)

element
NonlinearC1

[C(s)]−1 − [C1]−1

+ −

e(t) û(t) u(t)
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In the scalar case, we found that the nonlinear element
could be thought of in many different ways - e.g., as a
simple saturation or as a reference governor.  However,
for SISO problems, all these procedures turn out to be
equivalent.  In the MIMO case, subtle issues arise from
the way that the desired control,  û(t), is projected into
the allowable region.  We will explore three
possibilities.

(i) simple saturation
(ii) input scaling
(iii) error scaling
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Simple saturation:  Input saturation is the direct
analog of the scalar case.

Input scaling:  Here, compensation is achieved by
scaling down the controller output vector û(t) to a
new vector βû(t), every time that one (or more)
component of û(t) exceeds its corresponding
saturation level.  The scaling factor, β, is chosen in
such a way that u(t) = βû(t) - i.e., the controller is
forced to come back just to the linear operation zone.
This idea is shown schematically below.
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Figure 26.12: Scheme to implement the scaling of 
controller outputs

Sat〈◦〉
e(t) u(t)

−+

h〈◦〉

βI

usat

[C(s)]−1 − [C1 ]−1

C1

abs〈◦〉

û(t) βû(t)

−+

(In the above figure C1 should be C∞)
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Error scaling:  The third scheme is built by scaling
the error vector down to bring the loop just into the
linear region.  We refer to the following slide.
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Figure 26.13: Implementation of anti-wind-up via 
error scaling

Sat〈◦〉
e(t)

û(t)

+

−
αI

u(t)

[C(s)]−1 − [C1 ]−1

C1

abs〈◦〉

−+

usat

w2(t) = αe(t)

w1(t)

f〈◦〉

(In the above figure C1 should be C∞)
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Note that û can be changed only instantaneously by
modifying w2, because w1(t) is generated through a
strictly proper transfer function. Hence, the scaling of
the error is equivalent to bringing w2 to a value such
that û is just inside the linear region.
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In Figure 26.13, the block f��� denotes a function that
generates the scaling factor 0 < α < 1.  We observe that
the block with transfer-function matrix [C(s)-1] - C∞ is
strictly proper, so that any change in the error vector
e(t) will translate immediately into a change in the
vector û(t).  Instead of introducing abrupt changes in
e(t) (and thus in û(t), a gentler strategy can be used.  An
example of this strategy is to generate α  as the output
of a first-order dynamic system with unit d.c. gain, time
constant τ, and initial condition α(0) = 1.
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Figure 26.14: Effects of different techniques for dealing 
with saturation in MIMO systems

u
(1)
sat

u(2)

û
us

uu

w1

ue

u(1)

w2

û : raw control signal
us : control signal which results from directly saturating u(1)

uu : control signal obtained with the scaled control technique
(as in Figure 26.12)

ue : control signal obtained with the scaled error technique (as
in Figure 26.13)
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Example

Consider a MIMO process having the nominal model

with
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Note that this model is stable and minimum phase.
Therefore, dynamic decoupling is possible without
significant difficulties.

A suitable decoupling controller is

C(s) =
2(s+ 2)(s2 + 2s+ 4)
s(s+ 1)(s2 + 2s+ 7)

[
−s+ 2 −2s− 1
3 −s+ 2

]
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We first run a simulation that assumes that there is no
input saturation.  The results are shown below.  Observe
that full dynamic decoupling has indeed been achieved.

Figure 26.15:  Decoupled design in the absence of 
   saturation

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Time [s]

P
la

nt
 o

ut
pu

ts
 a

nd
 r

ef
.

y
1
(t) 

y
2
(t) 



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

We run a second simulation including saturation for
the controller output in the first channel, at
symmetrical levels ±2.5.  The results are shown
below

Figure 26.16:  Linear decoupled design - saturation
   in channel 1, at ±2.5.
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Clearly, the results are very poor.  This is due to
wind-up effects and stray coupling in the controller
that occur during saturation but which have not been
compensated.  We therefore explore anti-wind-up
procedures.

We example the three anti-wind-up procedures
described above.
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Simple saturation:  The results of simply putting a
saturation element into the nonlinear element of the
MIMO anti-windup current are shown on the next
slide.  It can be seen that this is unsatisfactory -
indeed, the results are similar to those where no anti-
wind-up mechanism was used.
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Figure 26.17:  Decoupled linear design with saturation
   in channel 1 and anti-wind-up scheme
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Input scaling:  A rather disappointing result is
observed regarding the plant outputs.  They are
shown on the next slide.

The results show only a marginal improvement over
those obtained by using the pure anti-wind-up
mechanism.



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

Figure 26.19: Plant outputs when using control scaling

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

Time [s]

P
la

nt
 o

ut
pu

ts
 a

nd
 r

ef
.

y
2
(t) 

y
1
(t) 



© Goodwin, Graebe, Salgado , Prentice Hall 2000Chapter 26

Error scaling:  When the error-scaling strategy is
applied to our example, we obtain the results shown
on the next slide.
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Figure 26.20:  Plant outputs when using scaled errors
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The results are remarkably better than those produced
by the rest of the strategies treated so far.  Actually,
full dynamic decoupling is essentially retained here -
the small coupling evident, is due to the
implementation of the error scaling via a (fast)
dynamical system.
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Summary
❖ Recall these key closed-loop specifications shared by SISO

and MIMO design:
◆ continued compensation of disturbances
◆ continued compensation of model uncertainty
◆ stabilization of open-loop unstable systems

whilst not
◆ becoming too sensitive to measurement noise
◆ generating excessive control signals

and accepting inherent limitations due to
◆ unstable zeros
◆ unstable poles
◆ modeling error
◆ frequency- and time-domain integral constraints
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❖ Generally, MIMO systems also exhibit additional
complexities due to

◆ directionality (several inputs acting on one output)
◆ dispersion (one input acting on several outputs)
◆ and the resulting phenomenon of coupling.

❖ Designing a controller for closed-loop compensation of this
MIMO coupling phenomenon is called decoupling.

❖ Recall that there are different degrees of decoupling,
including the following:

◆ static (i.e., To(0) is diagonal);
◆ triangular (i.e., To(s) is triangular); and
◆ dynamic (i.e., To(s) is diagonal).
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❖ Due to the fundamental law that So(s) + To(s) = I, if To
exhibits any of these decoupling properties, so does So.

❖ The severity and types of the trade-offs associated with
decoupling depend on

◆ whether the system is minimum phase;
◆ the directionality and cardinality of nonminimum-phase zeros;
◆ unstable poles.

❖ If all of the system’s unstable zeros are canonical (their
directionality affects one output only), then their adverse
effect is not spread to other channels by decoupling,
provided that the direction of decoupling is congruent with
the direction of the unstable zeros.
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❖ The price for dynamically decoupling a system having
noncanonical nonminimum-phase zeros of simple
multiplicity is that

◆ the effect of the nonminimum-phase zeros is potentially spread
across several loops; and,

◆ therefore, although the loops are decoupled, each of the affected
loops needs to observe the bandwidth and sensitivity limitations
imposed by the unstable zero dynamics.

❖ If one accepts the less stringent triangular decoupling, the
effect of dispersing limitations due to nonminimum-phase
zeros can be minimized.
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❖ Depending on the case, a higher cardinality of
nonminimum-phase zeros can either enforce or mitigate the
adverse effects.

❖ If a system is also open-loop unstable, there may not be any
way at all to achieve full dynamic decoupling with a one-
d.o.f. controller, although it is always possible with a two-
d.o.f. architecture for reference-signal changes.

❖ If a system is essentially linear but exhibits such actuator
nonlinearities as input or slew-rate saturations, then the
controller design must reflect this appropriately.
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❖ Otherwise, the MIMO generalization of the SISO wind-up
phenomenon can occur.

❖ MIMO wind-up manifests itself in two aspects of
performance degradation:

◆ transients due to growing controller states; and
◆ transients due to the nonlinearity impacting on directionality.
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❖ The first of these two phenomena …
… is analogous to the SISO case.

… is due to the saturated control signals not being able to annihilate the
control errors sufficiently fast compared to the controller dynamics;
therefore the control states continue to grow in response to the
nondecreasing control.  These wound up states produce the transients
when the loop emerges from saturation.

… can be compensated by a direct generalization of the SISO anti-wind-
up implementation.

❖ The second phenomena …
…  is specific to MIMO systems.

… is due to uncompensated interactions arising from the input vectors
losing its original design direction.
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❖ Analogously to the SISO case, there can be regions in state
space from which an open-loop unstable MIMO system
with input saturation cannot be stabilized by any control.

❖ More severely than in the SISO case, MIMO systems are
difficult to control in the presence of input saturation, even
if the linear loop is stable and the controller is implemented
with anti-wind-up.  This is due to saturation changing the
directionality of the input vector.

❖ This problem of preserving decoupling in the presence of
input saturation can be addressed by anti-wind-up schemes
that scale the control error rather than the control signal.


