You are here : Control System Design - Index | Book Contents | Preface (English)

Preface

Control Engineering plays a fundamental role in modern technological systems. The benefits of improved control in industry can be immense. They include improved product quality, reduced energy consumption, minimization of waste material, increased safety levels, and reduction of pollution. A difficulty with the subject, however, is that some of the more advanced aspects depend on a sophisticated mathematical background. Arguably, mathematical systems theory is one of the most significant achievements of twentieth-century science, but its practical impact is only as important as the benefits it can bring. Thus, in this book, we aim to strike a balance which places strong emphasis on design.

It was the authors' involvement in several industrial control system design projects that provided part of the motivation to write this book. In a typical industrial problem, we found ourselves investigating fluid and thermal dynamics, experiencing the detrimental effects of nonconstant PLC scan rates, dealing with system integration and network communication protocols, building trust with plant operators, and investigating safe bumpless transfer schemes for testing tentative control designs on potentially dangerous plants. In short, we experienced the day-to-day excitement, frustration, set-backs, and progress in getting advanced control to contribute to a commercial company's bottom line. This is not an easy task. Success in this type of venture typically depends on the application of a wide range of multidisciplinary skills; however, it is rewarding and exciting work for those who do it.

One of the main aims of this book is to share this excitement with our readers. We hope to contribute to the development of skills and attitudes within readers and students that will better equip them to face the challenges of real-world design problems. The book is thus intended to contribute to the ongoing reform of the Control Engineering curriculum. This topic is receiving considerable international attention. For example, a recent issue of IEEE Control Systems Magazine features an entire special section devoted to this theme.

Reforming the curriculum will not, however, be done by books alone - it will be done by people: students, teachers, researchers, practitioners, and publication and grant reviewers, and by market pressures. Moreover, for these efforts to be efficient and sustainable, the control engineering community will need to communicate their experiences via a host of new books, laboratories, simulations, and web-based resources. Thus, there will be a need for several different and complementary approaches. In this context, the authors believe that this book will have been successful if it contributes, in some way, to the revitalization of interest by students in the exciting discipline of control engineering.

We stress that this is not a how-to book. On the contrary, we provide a comprehensive, yet condensed, presentation of rigorous control engineering. We employ, and thus require, mathematics as a means to model the process, analyze its properties under feedback, synthesize a controller with particular properties, and arrive at a design addressing the inherent trade-offs and constraints applicable to the problem.

In particular, we believe that success in control projects depends on two key ingredients: (i) having a comprehensive understanding of the process itself, gained by studying the relevant physics, chemistry, and so on; and (ii) by having mastery of the fundamental concepts of signals, systems, and feedback. The first ingredient typically occupies more than fifty per cent of the effort. It is an inescapable component of the complete design cycle; however, it is impractical for us to give full details of the processes to which control might be applied, because they cover chemical plants, electromechanical systems, robots, power generators, and so on. We thus emphasize the fundamental control engineering aspects that are common to all applications and we leave readers to complement this emphasis with process knowledge relevant to their particular problem. Thus, the book is principally aimed at the second ingredient of control engineering. Of course, we do give details of several real-world examples, so as to put the methods into a proper context.

The central theme of this book is continuous-time control; however we also treat digital control in detail, because most modern control systems will usually be implemented on some form of computer hardware. This approach inevitably led to a book of larger volume than originally intended, but one with the advantage of providing a comprehensive treatment within an integrated framework. Naturally, there remain specialized topics that are not covered in the book; however, we trust that we provide a sufficiently strong foundation so that the reader can comfortably turn to the study of appropriate complementary literature.

Thus, in writing this book we chose as our principal goals the following:

  • providing accessible treatment of rigorous material selected with applicability in mind;
  • giving early emphasis to design, including methods for dealing with fundamental trade-offs and constraints;
  • providing additional motivation through substantial interactive web-based support; and
  • demonstrating the relevance of the material through numerous industrial case studies.

Design is a complex process, one that requires judgment and iteration. The design problem normally is incompletely specified, sometimes is ill-defined, and many times is without solution. A key element in design is an understanding of those factors that limit the achievable performance. This naturally leads to a viewpoint of control design that takes account of these fundamental limitations. This viewpoint is a recurring theme throughout the book.

Our objective is not to explore the full depth of mathematical completeness but instead to give enough detail so that a reader can begin applying the ideas as soon as possible. This approach is connected to our assumption that readers will have ready access to modern computational facilities, including the software package MATLAB-SIMULINK. This assumption allows us to put the emphasis on fundamental ideas rather than on the tools. Every chapter includes worked examples and problems for the reader.

The book is divided into eight parts. A brief summary of each of the parts is given here:

Part 1: The Elements
This part covers basic continuous-time signals and systems and would be suitable for an introductory course on this topic. Alternatively, it could be used to provide review material before starting the study of control in earnest.

Part II: SISO Control Essentials
This part deals with basic single-input signal-output SISO control, including classical proportional, integral and derivative PID tuning. This section, together with part 1, covers the content of many of the existing curricula for basic control courses.

Part III: SISO Control Design
This part covers design issues in SISO Control. We consider many of these ideas to be crucial to achieving success in practical control problems. In particular, we believe that the chapter dealing with constraints should be mentioned, if at all possible, in all introductory courses. Also, feedforward and cascade structures, which are covered in this part, are very frequently employed in practice.

Part IV: Digital Computer Control
This part covers material essential to the understanding of digital control. We go beyond traditional treatments of this topic by studying inter-sample issues.

Part V: Advanced SISO Control
This part could be the basis of a second course on control at an undergraduate level. It is aimed at the introduction of ideas that flow through to multi-input multi-output (MIMO) systems later in the book.

Part VI: MIMO Control Essentials
This part gives the basics required for a junior-level graduate course on MIMO control. In particular, this part covers basic MIMO system theory. It also shows how one can exploit SISO methods in some MIMO design problems.

Part VII: MIMO Control Design
This part describes tools and ideas that can be used in industrial MIMO design. In particular, it includes linear quadratic optimal control theory and optimal filtering. These two topics have major significance in applications. We also include a chapter on Model Predictive Control. We believe this to be important material, because of the widespread use of this technique in industrial applications.

Part VIII: Advanced MIMO Control
This final part of the book could be left for private study. It is intended to test the reader's understanding of the other material by examining advanced issues. Alternatively, instructors could use this part to extend parts VI and VII in a more senior graduate course on MIMO Control.

Two of the authors (Goodwin and Salgado) have taught undergraduate and postgraduate courses of the type mentioned above, using draft versions of this book, in Australia and South America.

The material in the book is illustrated by several industrial case studies with which the authors have had direct involvement. Most of these case studies were carried out, in collaboration with industry, by the Centre for Integrated Dynamics and Control (CIDAC) (a Commonwealth Special Research Centre) at the University of Newcastle.

The projects that we have chosen to describe include the following:

  • satellite tracking
  • pH control
  • control of a continuous casting machine
  • sugar mill control
  • distillation column control
  • ammonia synthesis plant control
  • zinc coating mass estimation in a continuous-galvanizing line
  • BISRA gauge for thickness control in rolling mills
  • roll eccentricity compensation in rolling mills
  • hold-up effect in reversing rolling mills
  • flatness control in steel rolling
  • vibration control

Many of the case studies have also been repeated, and further embellished, on the book's web page, where Java applets are provided so that readers can experiment with the systems in the form of a ``virtual laboratory". A secondary advantage of having the case studies gathered in one place on the web page is that real control problems usually bring together many aspects, and thus it is difficult to localize them in the book. The web page thus gives a holistic view of the issues involved in the case studies.

In addition, we refer to several laboratory-scale control problems, including a ball and plate mechanism, coupled tanks apparatus, and inverted pendulum. Each of these is the basis of a laboratory experiment within our universities to illustrate control principles.

Alternatively see the authors' home pages for a link.

Newcastle, Australia
Valparaíso, Chile
Vienna, Austria

 

<-
Previous
^
Up - Book Contents

Next