You are here :
Control System Design - Index | Book Contents |
Appendix D
| Section D.2
D. Properties of Continuous-Time Riccati Equations
D.2 Solutions of the CTARE
The Continuous Time
Algebraic Riccati Equation (CTARE) has
many solutions, because it is a matrix quadratic equation. The
solutions can be characterized as follows.
Lemma D.3
Consider the following CTARE:
![\begin{displaymath}0=\ensuremath{\boldsymbol{\Psi}} -\ensuremath{\mathbf{P}}\ens...
...{\mathbf{A}} +\ensuremath{\mathbf{A}} ^T\ensuremath{\mathbf{P}}\end{displaymath}](appendixD-img58.png) |
(D.2.1) |
(i) |
The CTARE can be expressed as |
![\begin{displaymath}\begin{bmatrix}-\ensuremath{\mathbf{P}} &\ensuremath{\mathbf{...
...\\ \ensuremath{\mathbf{P}}\end{bmatrix}=\ensuremath{\mathbf{0}}\end{displaymath}](appendixD-img59.png) |
(D.2.2) |
|
|
where
is defined in (D.1.8).
|
(ii) |
Let
be defined so that |
![\begin{displaymath}\ensuremath{\mathbf{\overline{V}}}\;^{-1}\ensuremath{\mathbf{...
...mathbf{0}} & \ensuremath{\boldsymbol{\Lambda}} _b
\end{bmatrix}\end{displaymath}](appendixD-img61.png) |
(D.2.3) |
|
|
where
are any partitioning of the
(generalized) eigenvalues of
such that, if
is
equal to
for same ,
then
for some .
|
|
Let |
![\begin{displaymath}\ensuremath{\mathbf{\overline{V}}} = \begin{bmatrix}
\ensurem...
... _{21} & \ensuremath{\mathbf{\overline{V}}} _{22}
\end{bmatrix}\end{displaymath}](appendixD-img68.png) |
(D.2.4) |
|
|
Then
is a solution of the
CTARE.
|
Proof
|